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Abstract. Although koala retrovirus (KoRV) is widely termed a pathogen, direct evidence for causation 
of disease impacts in koalas (Phascolarctos cinereus) remains elusive. Examination of the immune system 
of koalas could provide a sharper tool to investigate this but progress has been slow due to a paucity of 
immunological reagents in this species, and historical contradictions in research findings in this area.  
Our work using cross reactive antibodies to examine behaviour of resting and stimulated koala T cells 
(anti-human CD3); B cells (anti-human CD79b); MHCII (anti-human HLA-DP, DQ, DR) and interferon 
gamma (anti-bovine IFNg) by flow cytometry have revealed some features consistent with a skew to a 
Th2 (B cell) immune focus. Assessing the role of KoRV in immunomodulation in koalas clearly requires 
more in-depth research. We have used recent advances in genomics of other marsupials to develop tools 
necessary to assess KoRV’s effects on koala immune function in free-ranging, captive and in-vitro systems.
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Immunosuppression in koalas: is it clear-cut?

Early researchers working on koala immunology formed 
the belief that koalas were immunologically “lazy”, and 
this has coloured perceptions of koala immunology in the 
broader community ever since.  This idea was originally 
put forward based on apparently slow seroconversion 
to chlamydial infection, and a limited cellular response 
to overwhelming sarcoptic mange in a small number of 
koalas (Brown, 1988). It sparked a series of studies that 
pioneered marsupial immunology but also set the scene for 
two decades of intriguingly disparate findings:  lymphoid 
tissues of koalas are generally more sparsely populated 
than those of many species (Wilkinson et al., 1992a), yet 
the arrangement of these tissues is consistent with those of 
eutheria, with similar distribution of T and B cells (Hemsley 
et al., 1995, 1996a, b); initial experiments indicated slow 
and weak local cutaneous delayed type hypersensitivity 
reactions (Wilkinson et al., 1994), yet koalas are clearly 
capable of mounting prolific lymphoplasmacytic responses, 
with their inflammatory infiltrates and distribution of B and T 

lymphocytes in chlamydial disease being very similar to the 
non-protective, deleterious response to conserved chlamydial 
heat shock proteins that induces pelvic inflammatory disease 
in humans (Hemsley & Canfield, 1997; Morrison, 1991). 
Similarly, in contrast to poor antibody responses described 
initially (Wilkinson et al., 1992b; Wilkinson et al., 1994), 
recent vaccine trials induced strong humoral and cellular 
responses (Carey et al., 2010; Kollipara et al., 2012). 
Also, in response to natural Chlamydia pecorum infection, 
koalas develop neutralizing anti-MOMP antibodies (Girges 
et al., 1993), and also develop high anti-hsp60 and hsp10 
antibody titres in association with chlamydial reproductive 
tract fibrosis (Higgins et al., 2005), as do women similarly 
affected by C. trachomatis (Domeika et al., 1998; LaVerda 
et al., 2000).

Clearly, we have evidence of outcomes of a functional 
adaptive immune response in the koala.  However, in terms 
of its strengths and weaknesses, and the evolutionary forces 
that have shaped it, we are just beginning to scrape the 
surface.  KoRV as a potential immunosuppressive agent 
needs to be considered in the context of a range of forces 
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and trade-offs shaping a co-evolutionary relationship 
between a host, its environment and a range of potential 
pathogens. Many diseases of koalas are shared across other 
marsupials, as might be expected, based on the shared 
environments in which they evolved and now inhabit; 
Cryptococcus gatti invasion occurs in immunocompetent 
hosts of many species (Krockenberger et al., 2003); a 
range of marsupial species show tendency to disseminated 
mycobacterial infection (as do badgers and ferrets) (Buddle 
& Young, 2000); and wombats are also highly susceptible to 
sarcoptic mange (Skerratt, 2005).  At the same time, it would 
not be surprising to find species- or even habitat-specific 
weaknesses or strengths in the koala immune response.  In 
theory, if Chlamydia pecorum were a European introduction, 
a relatively non-gregarious species on a lean energy and 
nutrient budget, such as the koala, might (or might not) have 
evolved a more limited investment in adaptive immunity 
than that needed to protect against contagious pathogens in 
a more social species.  As another hypothetical example on 
a finer scale, those koala populations needing serological 
defence against the paralysis tick (Ixodes holocyclus) 
toxin (i.e. in coastal regions of Queensland and New South 
Wales, where chlamydial disease is also generally most 
common) might benefit from a strong antibody-based (Th2) 
immunity, in a trade-off, at the expense of the cellular (Th1) 
response considered critical to elimination of Chlamydia. 
When laid over the impact of a history of hunting, regional 
translocation and habitat fragmentation on immune gene 
(MHCII) diversity (Lau et al., 2013, 2014); the likelihood 
of some MHCII variants being associated with survival and 
chlamydial disease (Lau, 2013); and diversity of chlamydial 
strains among and within koala populations (Higgins et al., 
2012; Marsh et al., 2011); it becomes evident that we are 
dealing with a complex system.  This highlights the need 
for integrated studies including both eco-immunological 
and epidemiological studies in free-ranging animals in a 
variety of populations and disease states, and exploration 
of pathogenic mechanisms in more controllable captive or 
in vitro systems.

Is KoRV immunomodulatory in koalas? 
Do we have enough data?

Associations with infectious disease are equivocal 
(Simmons, 2011; Tarlinton et al., 2005), though this might 
be due to the multi-factorial nature of disease, especially 
in populations of free-ranging animals.  The most direct 
evidence for immunomodulatory effects of KoRV comes 
from the effect of purified KoRV on cytokine expression 
by cultured human PBMCs, whereby it induced elevated 
expression of interleukin-6 (IL-6), IL-10, growth-related 
oncogene (GRO) and monocyte chemotactic protein-1 
(MCP-1) (Fiebig et al., 2006).  This is consistent with the 
highly conserved nature of the retroviral transmembrane 
envelope protein p15E, or immunosuppressive domain 
(ISD), across KoRV, GALV, MuLV and FeLV (Fiebig et 
al., 2006); and the wide range of its effects on cells of 
other species in vitro, including: inhibition of respiratory 
burst and chemotaxis of the human monocyte; inhibition 

of macrophage accumulation at inflammatory foci in 
mice; suppression of neutrophil function; inhibition of 
human natural killer cell activity; inhibition of lymphocyte 
proliferation and mitogenic cytokine production; and 
increased production of interleukin-10 (IL-10) (Denner, 
1998).  Whether these effects occur in koalas and whether 
these have significant downstream effects in this species has 
not yet been tested.

Due to constant pathogen-driven selection, immune 
molecules are among the least conserved between 
species. Our ability to examine koala immune profiles 
has, therefore, been limited to detection of antibodies, 
lymphocyte proliferation assays, immunophenotyping by 
flow cytometry with a limited number of cross-reactive 
antibodies to conserved (mostly intra-cytoplasmic) domains 
(T cell, anti-human CD3; B cell, anti-human CD79b; 
MHCII, anti-human HLA-DP, DQ, DR; IFNg) (Higgins 
et al., 2004; Lau et al., 2012) and, very recently, qPCR for 
IL10, IFNg and TNFa (Mathew et al., 2013a; 2013b).  Our 
recent immunophenotypic studies on captive, KoRV-positive 
koalas (Lau et al., 2012) revealed some interesting features: 
elevated numbers of B cells relative to other species (1.0–
4.9×106 cells/ml vs 0.17–0.56×106 cells/ml, respectively), 
and absence of MHCII expression on stimulated and non-
stimulated T cells. Both Concavalin A (ConA) and Pokeweed 
Mitogen (PWM) induced MHCII up-regulation in koala B 
cells but not T cells; in contrast to the marked (e.g., 50–90%) 
MHCII expression on T cells of all other species studied 
to date, but mice (Byrne et al., 2000; Rideout et al., 1992; 
Schwartz et al., 2005; Holling et al., 2004). Ability of koala 
T cells to respond to mitogens was evident, in that PWM 
induced proliferation of T and B cells and ConA induced 
preferential proliferation of T cells in our study and, in our 
previous study, 14% of PMA-Ionomicin stimulated koala 
lymphocytes labelled strongly with cross-reactive anti-IFNg 
antibodies (Higgins et al., 2004).  Increased B cell numbers 
and absence of T cell MHCII expression would be consistent 
with retrovirus-associated increased Th2 profile (Denner, 
1998; Haraguchi, 2008). However, it could alternatively 
reflect an evolutionary adaptation within the koala’s immune 
response and this phenomenon needs to be examined in more 
detail KoRV positive and negative koalas from a range of 
habitats and disease states.

Where to now: testing the effects of KoRV 
on koala immune function

By using available sequence from non-koala marsupial 
genomes (common opossum Monodelphis domestica, 
tammar wallaby Macropus eugenii, Tasmanian devil 
Sarcophilus harrisii, common brushtail possum Trichosurus 
vulpecula) (Morris et al., 2010) we have recently generated 
koala sequence and developed and validated a series of 
koala-specific qPCRs for immune genes CD4, CD8, IL-10, 
IL-4, IFNg, IL-6 and several reference genes (Maher et al., 
2014). We are applying these to our collections of samples 
from KoRV positive and negative free-ranging koalas, and 
cells of captive koalas in in vitro studies to better describe 
normal and abnormal immune function in these koalas.
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