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ABSTRACT. Although koala retrovirus (KoRV) is widely termed a pathogen, direct evidence for causation
of disease impacts in koalas (Phascolarctos cinereus) remains elusive. Examination of the immune system
of koalas could provide a sharper tool to investigate this but progress has been slow due to a paucity of
immunological reagents in this species, and historical contradictions in research findings in this area.
Our work using cross reactive antibodies to examine behaviour of resting and stimulated koala T cells
(anti-human CD3); B cells (anti-human CD79b); MHCII (anti-human HLA-DP, DQ, DR) and interferon
gamma (anti-bovine IFNg) by flow cytometry have revealed some features consistent with a skew to a
Th2 (B cell) immune focus. Assessing the role of KoRV in immunomodulation in koalas clearly requires
more in-depth research. We have used recent advances in genomics of other marsupials to develop tools
necessary to assess KoRV’s effects on koala immune function in free-ranging, captive and in-vitro systems.
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Immunosuppression in koalas: is it clear-cut?

Early researchers working on koala immunology formed
the belief that koalas were immunologically “lazy”, and
this has coloured perceptions of koala immunology in the
broader community ever since. This idea was originally
put forward based on apparently slow seroconversion
to chlamydial infection, and a limited cellular response
to overwhelming sarcoptic mange in a small number of
koalas (Brown, 1988). It sparked a series of studies that
pioneered marsupial immunology but also set the scene for
two decades of intriguingly disparate findings: lymphoid
tissues of koalas are generally more sparsely populated
than those of many species (Wilkinson et al., 1992a), yet
the arrangement of these tissues is consistent with those of
eutheria, with similar distribution of T and B cells (Hemsley
et al., 1995, 1996a, b); initial experiments indicated slow
and weak local cutaneous delayed type hypersensitivity
reactions (Wilkinson et al., 1994), yet koalas are clearly
capable of mounting prolific lymphoplasmacytic responses,
with their inflammatory infiltrates and distribution of B and T
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lymphocytes in chlamydial disease being very similar to the
non-protective, deleterious response to conserved chlamydial
heat shock proteins that induces pelvic inflammatory disease
in humans (Hemsley & Canfield, 1997; Morrison, 1991).
Similarly, in contrast to poor antibody responses described
initially (Wilkinson ef al., 1992b; Wilkinson et al., 1994),
recent vaccine trials induced strong humoral and cellular
responses (Carey et al., 2010; Kollipara et al., 2012).
Also, in response to natural Chlamydia pecorum infection,
koalas develop neutralizing anti-MOMP antibodies (Girges
et al., 1993), and also develop high anti-hsp60 and hsp10
antibody titres in association with chlamydial reproductive
tract fibrosis (Higgins et al., 2005), as do women similarly
affected by C. trachomatis (Domeika et al., 1998; LaVerda
et al., 2000).

Clearly, we have evidence of outcomes of a functional
adaptive immune response in the koala. However, in terms
of its strengths and weaknesses, and the evolutionary forces
that have shaped it, we are just beginning to scrape the
surface. KoRV as a potential immunosuppressive agent
needs to be considered in the context of a range of forces
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and trade-offs shaping a co-evolutionary relationship
between a host, its environment and a range of potential
pathogens. Many diseases of koalas are shared across other
marsupials, as might be expected, based on the shared
environments in which they evolved and now inhabit;
Cryptococcus gatti invasion occurs in immunocompetent
hosts of many species (Krockenberger et al., 2003); a
range of marsupial species show tendency to disseminated
mycobacterial infection (as do badgers and ferrets) (Buddle
& Young, 2000); and wombats are also highly susceptible to
sarcoptic mange (Skerratt, 2005). At the same time, it would
not be surprising to find species- or even habitat-specific
weaknesses or strengths in the koala immune response. In
theory, if Chlamydia pecorum were a European introduction,
a relatively non-gregarious species on a lean energy and
nutrient budget, such as the koala, might (or might not) have
evolved a more limited investment in adaptive immunity
than that needed to protect against contagious pathogens in
a more social species. As another hypothetical example on
a finer scale, those koala populations needing serological
defence against the paralysis tick (Ixodes holocyclus)
toxin (i.e. in coastal regions of Queensland and New South
Wales, where chlamydial disease is also generally most
common) might benefit from a strong antibody-based (Th2)
immunity, in a trade-off, at the expense of the cellular (Th1)
response considered critical to elimination of Chlamydia.
When laid over the impact of a history of hunting, regional
translocation and habitat fragmentation on immune gene
(MHCII) diversity (Lau et al., 2013, 2014); the likelihood
of some MHCII variants being associated with survival and
chlamydial disease (Lau, 2013); and diversity of chlamydial
strains among and within koala populations (Higgins et al.,
2012; Marsh et al., 2011); it becomes evident that we are
dealing with a complex system. This highlights the need
for integrated studies including both eco-immunological
and epidemiological studies in free-ranging animals in a
variety of populations and disease states, and exploration
of pathogenic mechanisms in more controllable captive or
in vitro systems.

Is KoRV immunomodulatory in koalas?
Do we have enough data?

Associations with infectious disease are equivocal
(Simmons, 2011; Tarlinton ef al., 2005), though this might
be due to the multi-factorial nature of disease, especially
in populations of free-ranging animals. The most direct
evidence for immunomodulatory effects of KoRV comes
from the effect of purified KoRV on cytokine expression
by cultured human PBMCs, whereby it induced elevated
expression of interleukin-6 (IL-6), IL-10, growth-related
oncogene (GRO) and monocyte chemotactic protein-1
(MCP-1) (Fiebig et al., 2006). This is consistent with the
highly conserved nature of the retroviral transmembrane
envelope protein pl15E, or immunosuppressive domain
(ISD), across KoRV, GALV, MuLV and FeLV (Fiebig et
al., 2006); and the wide range of its effects on cells of
other species in vitro, including: inhibition of respiratory
burst and chemotaxis of the human monocyte; inhibition

of macrophage accumulation at inflammatory foci in
mice; suppression of neutrophil function; inhibition of
human natural killer cell activity; inhibition of lymphocyte
proliferation and mitogenic cytokine production; and
increased production of interleukin-10 (IL-10) (Denner,
1998). Whether these effects occur in koalas and whether
these have significant downstream effects in this species has
not yet been tested.

Due to constant pathogen-driven selection, immune
molecules are among the least conserved between
species. Our ability to examine koala immune profiles
has, therefore, been limited to detection of antibodies,
lymphocyte proliferation assays, immunophenotyping by
flow cytometry with a limited number of cross-reactive
antibodies to conserved (mostly intra-cytoplasmic) domains
(T cell, anti-human CD3; B cell, anti-human CD79b;
MHCII, anti-human HLA-DP, DQ, DR; IFNg) (Higgins
et al., 2004; Lau et al., 2012) and, very recently, qPCR for
IL10, IFNg and TNFa (Mathew et al., 2013a; 2013b). Our
recent immunophenotypic studies on captive, KoRV-positive
koalas (Lau et al., 2012) revealed some interesting features:
elevated numbers of B cells relative to other species (1.0—
4.9x10° cells/ml vs 0.17-0.56x10° cells/ml, respectively),
and absence of MHCII expression on stimulated and non-
stimulated T cells. Both Concavalin A (ConA) and Pokeweed
Mitogen (PWM) induced MHCII up-regulation in koala B
cells but not T cells; in contrast to the marked (e.g., 50-90%)
MHCII expression on T cells of all other species studied
to date, but mice (Byrne et al., 2000; Rideout et al., 1992;
Schwartz et al., 2005; Holling et al., 2004). Ability of koala
T cells to respond to mitogens was evident, in that PWM
induced proliferation of T and B cells and ConA induced
preferential proliferation of T cells in our study and, in our
previous study, 14% of PMA-Ionomicin stimulated koala
lymphocytes labelled strongly with cross-reactive anti-IFNg
antibodies (Higgins et al., 2004). Increased B cell numbers
and absence of T cell MHCII expression would be consistent
with retrovirus-associated increased Th2 profile (Denner,
1998; Haraguchi, 2008). However, it could alternatively
reflect an evolutionary adaptation within the koala’s immune
response and this phenomenon needs to be examined in more
detail KoRV positive and negative koalas from a range of
habitats and disease states.

Where to now: testing the effects of KoRV
on koala immune function

By using available sequence from non-koala marsupial
genomes (common opossum Monodelphis domestica,
tammar wallaby Macropus eugenii, Tasmanian devil
Sarcophilus harrisii, common brushtail possum Trichosurus
vulpecula) (Morris et al., 2010) we have recently generated
koala sequence and developed and validated a series of
koala-specific qPCRs for immune genes CD4, CD8, IL-10,
IL-4, IFNg, IL-6 and several reference genes (Maher et al.,
2014). We are applying these to our collections of samples
from KoRV positive and negative free-ranging koalas, and
cells of captive koalas in in vitro studies to better describe
normal and abnormal immune function in these koalas.
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