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Abstract. Bass Strait is an important biogeographic barrier for Australian mammals, often resulting in 
significant genetic differentiation between populations on the mainland and Tasmania for species with a 
trans-Bassian distribution. King and Flinders Islands, in Bass Strait, are the largest remnants of the land 
bridge that once linked Tasmania with mainland Australia. Due to their remote locality and habitat loss on 
the islands since European settlement, little is known about the evolutionary movements of species across 
the former land bridge. Here we present genetic data, generated from museum skins, on the King and 
Flinders Island populations of Long-nosed Potoroo, Potorous tridactylus (Kerr, 1792) to investigate their 
affinities with other populations of this species. We also assessed the validity of the subspecies Potorous 
tridactylus benormi Courtney, 1963 described from King Island. Analysis of two partial mitochondrial 
DNA genes (CO1, ND2) indicate that potoroos on King and Flinders Islands are more closely related to 
Tasmanian rather than mainland potoroo populations. Molecular and morphological data from the holotype 
and paratype of Potorous tridactylus benormi does not support separate taxonomic status and places it 
within the Tasmanian subspecies Potorous tridactylus apicalis (Gould, 1851).

Introduction 
Bass Strait is a 240 km expanse of ocean that separates 
Victoria on mainland Australia and the island of Tasmania. 
It is relatively shallow, mostly less than 100 m deep, and 
during glacial cycles, sea level drops have resulted in the 
exposure of a land bridge—“the Bassian Plain”—facilitating 
the dispersal of species between mainland Australia and 
Tasmania. This land bridge was most recently exposed from 

around 43,000 years ago until around 14,000 years ago, 
including the period of the Last Glacial Maxima (Lambeck 
& Chappell, 2001) and since its most recent breakdown, 
has formed a biogeographic barrier for many species with a 
trans-Bassian distribution (Firestone, 1998; Symula et al., 
2008; Schultz et al., 2007; Toon et al., 2010).

Today, all that remains of this land bridge are over 50 
islands in Bass Strait (Fig. 1). Along the western edge of the 
former Bassian Plain lies King Island (c. 1100 sq km) located 

mailto:Greta.Frankham@Australian.Museum
https://australian.museum/
https://doi.org/10.3853/j.2201-4349.72.2020.1725
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3853/j.2201-4349.72.2020.1725
https://creativecommons.org/licenses/by/4.0/
https://journals.australian.museum/
https://australian.museum/
https://australian.museum/
https://orcid.org/0000-0002-0585-6700
https://orcid.org/0000-0002-5626-1029
https://orcid.org/0000-0002-7109-0600


264 Records of the Australian Museum (2020) Vol. 72

halfway between Cape Otway, Victoria and north-western 
Tasmania, as well as the Hunter Group, extending from the 
north-west tip of Tasmania. Along the eastern edge of the 
former Bassian Plain is a string of island groups running 
between Wilsons Promontory in Victoria and north-eastern 
Tasmania, including the Hogan, the Kent, and the Furneaux 
Groups (Fig. 1). Flinders Island (c. 1367 sq km) is the largest 
of the Bass Strait Islands and is part of the Furneaux Group 
(Abbott & Burbidge, 1995). 

Due to the presence of seal colonies, settlement of the Bass 
Strait Islands by Europeans began as early as the late 18th 
century, thus these islands have a long history of settlement 
and habitat disturbance (Hope, 1973). Many of the islands 
have experienced extensive habitat loss and modification 
primarily from agricultural land practices (Courtney, 1963; 
Green & McGarvie, 1971; Hope, 1973), as well as the 
introduction of exotic and/or invasive species (Abbott & 
Burbidge, 1995). These changes have resulted in declines 
in native faunal assemblages, as well as the extinction of 
populations of several species, including Southern Elephant 
Seal (Mirounga leonina), Common Wombat (Vombatus 
ursinus), Spotted-tail Quoll (Dasyurus maculatus), and King 
Island Emu (Dromaius novaehollandiae minor) (Hope, 1973).

The loss of species from the Bass Strait Islands, coupled 
with the logistical difficulty of surveying the islands, means 
that specimens, and in particular tissue samples, from these 
islands are rare or absent from natural history collections, 
and therefore not available for inclusion in studies looking at 
the biogeography of the Australian mainland and Tasmania 
(Frankham et al., 2016). Analyses of these populations would 
provide important insights into the evolutionary history of 
the Bassian Plain land bridge. 

Figure 1. A map of Bass Strait and the Bass Strait Islands. 

The Long-nosed Potoroo (Potorous tridactylus) (Kerr 
1792) has a trans-Bassian distribution and has been recorded 
on many of the larger Bass Strait islands, including King 
Island, the Furneaux Group Islands (Flinders Island, Clarke 
Island, Cape Barren Island), the Kent Group Islands (Deal 
Island), as well as several in the Hunter Group (Robbins, 
Walker, and Three Hummock Islands) (Hope, 1963; Abbott 
& Burbidge, 1995). While considered reasonably common 
prior to the 1940s on King Island (Courtney, 1963), it has 
since declined, likely due to its sensitivity to habitat loss 
and disturbance (Frankham et al., 2011; Holland & Bennett, 
2009; Andren et al., 2018). The last confirmed record of 
a Long-nosed Potoroo on the Bass Strait Islands was an 
individual trapped on Flinders Island in 1970 (Johnston, 
1973). Johnston (1973) commented at the time, that the 
species was considered very rare on King Island, Flinders 
Island, and Clarke Island. Since the 1970s there has only been 
a handful of sightings (ALA, 2020) and these populations 
may be very rare or have gone extinct (Eldridge & Frankham, 
2015).

Courtney (1963) assessed the size and pelage colouration 
of the Long-nosed Potoroos on King Island and designated 
this population a separate subspecies, Potorous tridactylus 
benormi Courtney, 1963, with the holotype lodged with 
the Australian Museum (AM M.8319) (Fig. 2), along with 
a paratype (AM M.8373). Subsequent authors have not 
considered the proposed King Island subspecies as valid 
or taxonomically distinct (Calaby & Richardson, 1988; 
Johnston, 2008; Jackson & Groves, 2015; Eldridge & 
Frankham, 2015). However, this proposed taxon has never 
been tested with molecular data, making this population of 
particular interest. 
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Recent genetic studies by Frankham et al., (2012; 2016) 
examined the phylogeography of the Long-nosed Potoroo 
across its range. These studies identified Bass Strait as a 
major biogeographic barrier within the species, suggesting 
that gene flow between mainland Australia and Tasmanian 
populations last occurred around 2.45 million years ago. 
Given the last confirmed trapping of a potoroo on a Bass 
Strait Island was in 1970 (Johnston, 1973), no tissue samples 
were available for inclusion in these studies, thus data from 
the Bass Strait island populations were not assessed.

In this study, we aimed to fill this gap to understand 
the evolutionary history of the species across the Bassian 
Plain by using genetic data generated from dried museum 
specimens. We aimed to examine the relationship of Long-
nosed Potoroos from King Island and Flinders Island to 
determine if these shared a closer relationship with either 

Figure 2. Holotype of Potorous tridactylus benormi AM M.8319 dorsal view (top) and lateral view (bottom). Photography by Sally Cowan.

the mainland or Tasmanian populations. We also sampled 
the holotype and paratype of Potorous tridactylus benormi 
in order to assess its validity as a subspecies. 

Methods 
Skin samples (2 × 2 mm) were taken with separate sterile 
scalpels from Potorous tridactylus study skins in the 
Australian Museum (AM) and Museum Victoria (NMV), 
including AM M.8319 (holotype of benormi) AM M.8373 
(paratype of benormi) from King Island; AM M.4398 
and NMV C.8859 from Flinders Island; and AM M.9138 
and AM M.10788 from Cobargo, NSW. DNA extraction 
was undertaken in a designated low-template laboratory 
(with positive air pressure and HEPA filtered air handling 
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Table 1. Summary of primers designed to amplify Cytochrome c oxidase subunit 1 and NADH dehydrogenase subunit 2 for 
this study, those modified from or designed by previous studies are indicated.

  forward 5'–3' reverse 5'–3'

 Cytochrome c oxidase subunit 1  
  Pot_CO1_F5 CACGCAGGRGCYTCAGTAG Pot_CO1_R6 GATAGTAGVAGMAGRACTGCTGT
  Pot_CO1_F6 ACCACCCGCCCTRTCMCAATATC Pot_CO1_R7 CTTCTGGGTGRCCRAAGAATCA
  Pot_CO1_F7 ACYATRCTATTAACAGACCG Pot_CO1_R8 TTACCAGAGTAGTAAGTYAC
  Pot_CO1_Cox_F8 a TGATTCTTYGGYCACCCAGAAG Pot_CO1_R9 TAGGCTCGGGTATCKACRTC
  Pot_CO1_F9 ACAGTTGGACTRGAYGTAG Pot_CO1_R10 ATRAATCCTAGGGCTCATAG
  Pot_CO1_F10 GTTTTCAGCTGRTTAGCAAC Pot_CO1_R11 CCTATWGATAGGACGTAGTGGAAGTG
 NADH dehydrogenase subunit 2  
  Pot_ND2_F2 AAATCYTTAACCAACYTATG Pot_ND2_R3 GGGAATATRGTGAGAGTTGAG
  Pot_ND2_F3 GCWATCCTAATAGCYATATCA mrND2c b GATTTGCGTTCGAATGTAGCAAG
 a Primer modified from M320 Schneider et al., 1998.
 b M636 from Osborne & Christidis, 2001.

system) at the Australian Centre for Wildlife Genomics at 
the Australian Museum. Prior to extraction samples were 
rehydrated in sterile phosphate buffered saline (PBS) on a 
gentle shake (300 rpm) overnight at 37°C. DNA was extracted 
using the QIAamp DNA Investigator Kit (QIAGEN) using 
the Isolation of Total DNA from Chewing Gum protocol 
following manufacturer’s instructions, including the addition 
of Carrier RNA. 

Primers were designed to amplify a series of overlapping 
short fragments (125–200 base pairs) for the partial regions of 
the mitochondrial DNA genes; cytochrome c oxidase subunit 
1 (CO1, 6 overlapping fragments) and NADH dehydrogenase 
subunit 2 (ND2, 2 overlapping fragments) (Table 1). PCRs 
were carried out in 25 µl reactions and comprised 100–400 ηg 
genomic DNA, 1 × PCR Buffer II (Applied Biosystems), 
0.2 mM each dNTP, 1.5–3.0 mM MgCl2, 0.2 μmol each 
primer (Table 1) and 1.0U AmpliTaq GoldTM polymerase 
(Applied Biosystems); negative controls were used for 
all PCR reactions. PCR reactions were conducted on an 
Eppendorf Thermocycler under the following conditions; 
95°C for 9 minutes for one cycle, followed by 50 cycles of 
94°C (60 s) denaturation, 50°C (60 s) annealing, and 60°C 
(60 s) extension, followed by a final cycle of extension at 
60°C for 10 minutes. All PCR products were purified using 
Exo-SapIT (USB Corporation, Cleveland, Ohio, USA), 
and directly sequenced on an AB 3730xl Sequencer at the 
Australian Genome Research Facility, Sydney.

Sequences were visually checked with reference 
to chromatograms using Sequencher version 5.2.4. 
Sequence alignments were carried out in Mega version 6 
with comparison to CO1 and ND2 fragments generated by 
Frankham et al. (2012) (GenBank Accession numbers CO1: 
JX111894–JX111903 and ND2 JX104566–JX104576), CO1 
and ND2 sequences from the common wallaroo, Osphranter 
robustus (GenBank accession number Y10524) were used as 
outgroups. Phylogenetic relationships were estimated using 
both Bayesian inference (BI) and maximum likelihood (ML). 
Mega version 6 (Nei & Kumar, 2000; Tamura et al., 2013), 
was used to determine an appropriate model of evolution 
(HKY + Γ) based on the Bayesian Information Criterion 
(BIC scores) and Akaike information criterion, corrected 
(AICc scores). All phylogenetic analyses were carried out 
using this model. Bayesian Inference (BI) analysis was 
conducted in MrBayes version 3.2 (Ronquist et al., 2012). 

Metropolis-Coupled Markov Chain Monte Carlo sampling 
was used to calculate posterior probabilities. The analyses 
were run using default settings for priors. Chains were run 
for 1 million generations and sampled every 100 generations 
to obtain 10,000 sampled trees. Maximum Likelihood was 
estimated using Mega version 6 (Tamura et al., 2013) with 
1000 bootstrap replicates. Tracer version 1.7.1 (Rambaut 
et al., 2018) was used to check for chain convergence and 
adequate effective sample size (> 200). Posterior probabilities 
(decimals) and bootstrap values (percentages) were used to 
assess the level of branch support.

Results
Partial CO1 and ND2 fragments were recovered from 
specimens from both King and Flinders Islands with differing 
success. 695 bp of CO1 sequence was obtained from both 
King Island samples (AM M.8373, AM M.8319), from one 
Flinders Island sample (NMV C8859), and both Cobargo 
(NSW) samples (AM M.9138, AM M.10788). One of the 
overlapping CO1 sections failed to amplify in the remaining 
Flinders Island sample (AM M.4398) and only 490 bp of 
CO1 was recovered from this sample. A total of 344 bp of 
partial ND2 were successfully amplified from one Flinders 
Island sample (AM M.4398) and one King Island sample 
(AM M.8373) and both Cobargo samples (AM M.9138, 
AM M.10788). Amplification failed in the remaining 
King (AM M.8319) and Flinders Island (NMV C8859) 
samples. Sequence data were deposited into GenBank 
(accession numbers, CO1: MT422368–MT422373; ND2: 
MT431409–MT431412).

Phylogenetic analyses were carried out on two datasets, 
one with CO1 only in order to maximize the data available 
from the Bass Strait Islands, including investigating the 
placement of the Potorous tridactylus benormi holotype and 
paratype (Fig. 3), and one with CO1 and ND2 concatenated 
in order to maximize the mtDNA data available for analyses 
(Fig. 4). The ML and BI trees for both data sets resolved 
trees of similar topology, with three well supported lineages 
concordant with currently recognized subspecies, the 
resolution however was superior in the concatenated dataset. 
The King and Flinders Island samples analysed in this study 
consistently grouped with samples of Potorous tridactylus 
apicalis, the Tasmanian subspecies, across all analyses. 
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Figure 3. Maximum Likelihood phylogenetic tree inferred from 695 bp of CO1 mtDNA sequence, including data from the Potorous 
tridactylus benormi Holotype (AM M.8319) and Paratype (AM M.8373). Bootstrap values for major lineages are shown. A similar tree 
topology was inferred from Bayesian inference. 

Figure 4. Bayesian Inference phylogenetic tree inferred from 1039 bp of concatenated CO1 and ND2 mitochondrial DNA sequence data. 
Posterior probabilities for major lineages are shown. A similar tree topology was also inferred from Maximum Likelihood. 
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Discussion
Although only partial fragments (695 bp of CO1 [n = 4] and 
344 bp of ND2 [n = 2]) were available for analysis, these 
data consistently placed the individuals from both King and 
Flinders Islands within the Tasmanian subspecies Potorous 
tridactylus apicalis. The topology of the phylogenetic 
trees generated in this study were concordant with those 
describing three divergent potoroo subspecies generated 
by Frankham et al. (2012) who examined a longer mtDNA 
fragment of 2103 bp of CO1 and ND2 from 11 potoroo 
samples, as well as 1893 bp of nuDNA. These subspecies 
were Potorous tridactylus tridactylus (distributed in New 
South Wales north of Sydney and in southeast Queensland), 
Potorous tridactylus trisulcatus (New South Wales south of 
Sydney, plus Victorian and South Australian populations) 
and Potorous tridactylus apicalis (Tasmanian populations). 
In addition, Frankham et al., (2016) examined c. 630 bp of 
mtDNA control region from 347 individuals and resolved 
the same three lineages with the larger sample size from 
across the species distribution. The concordance of the 
current data with these previous studies lends confidence in 
the placement of the sequences obtained from the museum 
skins. The current study is limited to the examination of 
mtDNA (more reliably amplified from museum skins) and 
so does not allow for further investigation of nuDNA and the 
possibility of introgression between subspecies. However, 
Frankham et al. (2012) investigated both mtDNA and 
nuDNA and found no evidence of introgression and both 
nuDNA and mtDNA sequence data were able to distinguish 
between Tasmania and the mainland populations. Thus, we 
believe that mtDNA is a reliable indicator of subspecies 
boundaries in this species. This closer affinity with Tasmania 
is congruent with the few other molecular studies of small or 
specialist mammal species with a trans-Bassian distribution 
that have also included samples from the Bass Strait Islands, 
including, Southern Brown Bandicoots (Isoodon obesulus) 
(Flinders Island only) (Cooper et al., 2018) and Platypus 
(Ornithorhynchus anatinus) (King Island only) (Gongora 
et al., 2012). A mtDNA study by Le Page et al. (2000) on 
the larger red-neck wallaby (Notamacropus rufogriseus) 
included samples from both King and Flinders Islands, as 
well as samples from Tasmania and mainland Australia 
(Warwick, QLD). Results from this study suggested Flinders 
Island samples grouped more closely with mainland 
Australia while King Island animals showed a closer affinity 
to Tasmanian samples. Historical connectivity between 
Tasmania and mainland populations and a lack of significant 
differentiation across Bass Strait have been shown in mtDNA 
studies for other generalist or larger more vagile species 
including Eastern Grey Kangaroos (Macropus giganteus) 
(Zenger et al., 2003) and Emu (Dromaius novaehollandiae) 
(Thomson et al., 2018).

While King and Flinders Islands are geographically 
closer to Tasmania (and associated islands) at present, the 
formation sequence of the Bassian Plain also supports the 
closer relationship between Tasmanian and Bass Strait Island 
potoroo populations. As the sea level fell during the last 
glacial maximum, the Furneaux Island Group would have 
first enlarged, merged, and formed a connection with north-
eastern Tasmania, followed by a similar process exposing the 
land around King Island and forming a connection with north 
western Tasmania. These connections would have occurred 

prior to the connection with mainland Australia (Hope, 1963; 
Lambeck & Chappell, 2001). This process, over thousands 
of years, would have allowed for the expansion northward of 
Tasmanian faunal populations, much earlier than mainland 
populations could move south. It was also suggested by 
Frankham et al., (2016) that much of the Bassian Plain likely 
contained unsuitable habitat for Long-nosed Potoroos, which 
resulted in an extended period of genetic isolation (estimated 
2.45 million years) between the Australian mainland and 
Tasmanian populations despite the periodic presence of a 
land bridge. Although molecular dating was not carried out 
for this study, the inclusion of individuals from the Bass 
Strait Islands in the analysis did not significantly alter the 
tree topology for either CO1 or ND2 based on the data of 
Frankham et al. (2012). Therefore, it is likely that suitable 
habitat for dispersal was found along the northern coasts 
of Tasmania and into the Furneaux Island Group and King 
Island, but did not extend further north or into the central 
Bassian Plain, forming a barrier to dispersal and geneflow, 
and maintaining this deep divergence even during the last 
glacial maximum.

As part of this study we generated DNA sequence data 
from the holotype and paratype of Potorous tridactylus 
benormi Courtney, 1963, from King Island. This taxon was 
described on the basis of size and colour, being on average 
smaller and having a dark grey-brown belly compared to 
“the typical race” (Courtney, 1963). Sequences obtained 
from these specimens however, were similar to, and 
nested within the Tasmanian Potorous tridactylus apicalis 
lineage identified by Frankham et al. (2012). These genetic 
data indicate that subsequent authors were correct in not 
recognizing the proposed subspecies Potorous tridactylus 
benormi Courtney, 1963. The morphological measurements 
given for the male holotype of Potorous tridactylus benormi 
described by Courtney (1963, p. 19) as “rather old and very 
fat” with a mass of “2 lb 6 oz” (1.07 kg), are not smaller than 
male potoroos measured in Smithton, north west Tasmania 
or Naringal in Victoria (Fig. 1). Smithton males have 
been recorded weighing c. 800 g to over 1 kg (Heinsohn, 
1968; unpublished data) and several studies on Naringal 
populations have recorded males average c. 780 g (Bennett, 
1987; Long, 2001; unpublished data). Surveys of Long-nosed 
Potoroos across their range, which encompasses a variety of 
different habitats, soil and geology types, have documented 
morphological variation in pelage colour and morphometric 
measurements that includes the variation seen in the King 
Island population (e.g., hindfoot measurements). These data 
suggest the King Island potoroos described by Courtney 
(1963) were not significantly smaller overall, but instead that 
at the time of publication the extent of the morphological 
variation in potoroo populations across their range was 
still largely undocumented (Heinsohn, 1968; Johnston & 
Sharman, 1976; Bennett, 1987; Bryant, 1989; Mason, 1997; 
Long, 2001; Frankham et al., 2011; Norton et al., 2011).

Dried study skins from natural history collections are often 
the only representatives of rare or extinct populations, in this 
case, the last potoroo trapped on a Bass Strait Island was 
caught in 1970 (Johnston, 1973), predating the establishment 
of tissue collections in any Australian museum and routine 
tissue sampling as part of general survey methods. The 
availability of low template DNA extraction methods, meant 
that from these skins, ranging in age from 45 to 85 years 
old, we were able to amplify up to 1039 bp of mitochondrial 
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DNA allowing us to place with confidence Long-nosed 
Potoroos found on King and Flinders Island within the 
Tasmanian subspecies. These museum skins have provided 
valuable insights about Long-nosed Potoroo populations 
on the Bass Strait Islands and these data should guide any 
future conservation management decisions regarding these 
populations, e.g., any translocations or re-introductions 
should be sourced from Tasmanian populations. More 
broadly, the range of taxa represented in museum collections, 
coupled with continuingly-improving genomic techniques, 
means there is great museum-based potential for unlocking 
genetic information to continue to improve our knowledge 
of the evolutionary history of the Australian fauna (Eldridge 
et al., 2020).
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