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Abstract. A new species of False Vampire Bat (Megadermatidae), Macroderma handae sp. nov., is 
described from dental, dentary and maxillary fragments recovered from limestone deposits at Dingo Gap, 
Oscar Range, in the Kimberley region of Western Australia. This material is likely to be of Pliocene age, 
or early Pleistocene, based on biocorrelation within the same sample. The absence of the P2 indicates that it 
is more derived than Miocene taxa including M. malugara and M. godthelpi, but its phylogenetic position 
relative to M. koppa could not be determined. It appears to be slightly smaller than M. gigas and M. koppa 
based on the size of M1 and M2. It can be distinguished from M. gigas by the lesser degree of fenestration in 
the maxilla; and from all other species of Macroderma by the shape of the protofossa of the M1, plus the M2 
protoconid relatively high and of proportionally greater area within the trigonid. Other material collected, 
but not identified completely or described, includes several lower canines from a species of emballonurid, 
and a dentary with M1-3 representing a vespertilionid bat. Given the wear striations observed on the M3 of 
the newly-described Macroderma species, we suggest that it was a predator of small vertebrates, including 
possibly the chiropteran co-inhabitants of the cave. This new species of Macroderma is the sixth species 
recognized in the genus so far, and the second from the Pliocene.
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Introduction
The family Megadermatidae (False Vampire Bats) has 
a long history that began in the mid-Eocene with its 
divergence from the Craseonycteridae c. 44–43 Ma, based 
on molecular dating methods (95% credibility interval 
47–39 Ma; Teeling et al., 2005; Foley et al., 2015). Until 
recently, the oldest known megadermatid fossil was 
considered to be Necromantis adichaster Weithofer, 1887, 
represented in the Quercy Phosphorites Formation, France, 
but this genus is now accepted to be part of a distinct 
family (Necromantidae; Sigé, 2011; Ravel et al., 2016; 

Hand & Sigé, 2018). Early megadermatid lineages are 
represented by modern extant taxa in the genera Lavia 
and Cardioderma, based on their inferred phylogenetic 
position (Hand, 1985; but see Kaňuch et al., 2015). The 
oldest megadermatid fossils, however, are: Saharaderma 
pseudovampyrus Gunnell et al., 2008 from early Oligocene 
deposits in Egypt (33.9–28.4 Ma), which shows similarities 
to Cardioderma and Lavia, and with which it may form a 
distinct African clade (Gunnell et al., 2008); and Megaderma 
lopezae Sevilla, 1990 from early Oligocene deposits in 
Spain. The remaining eight described Afro-European species 
of extinct Megaderma are represented in deposits that range 
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in age from the early Miocene (e.g., Megaderma brailloni 
Sigé, 1968 from the Aquitanian) to the Pleistocene (e.g., 
Megaderma watwat Bate, 1937) (reviewed in Sigé, 1976; 
Sevilla, 1990; Ziegler, 1993).

Australia has excellent representation of megadermatid 
fossil taxa, beginning from the mid-Cenozoic and extending 
to subfossil recent material (Molnar et al., 1984; Hand, 
1996). Most have been discovered in the freshwater 
limestone deposits of Riversleigh World Heritage Area, 
northwestern Queensland, which has a rich diversity of 
bat species from the families Mystacinidae (Hand et al., 
1998), Emballonuridae (Archer et al., 2006; King, 2013), 
Rhinonycteridae (Sigé et al., 1982; Hand, 1997a; Hand & 
Archer, 2005), Hipposideridae (Hand, 1997b; Hand, 1998a, 
1998b), Molossidae (Hand, 1990; Hand et al., 1997), and 
Vespertilionidae (Menu et al., 2002). 

The genus Megaderma is thought to have entered 
Australia after the middle Miocene, and the small-sized 
Megaderma richardsi from the early Pleistocene Rackham’s 
Roost Site at Riversleigh is its only known representative 
in Australia (Hand, 1995; Woodhead et al., 2016). Four 
extinct Australian megadermatid taxa have been referred to 
the endemic genus Macroderma—M. godthelpi Hand, 1985 
from the early Miocene Microsite and middle Miocene Gag 
Site, Riversleigh; M. malugara Hand, 1996 from the middle 
Miocene Gotham City Site, Riversleigh; an unnamed species 
of Macroderma from the middle Miocene Henk’s Hollow 
Site, Riversleigh (Hand, 1996); and M. koppa Hand, Dawson 
& Augee, 1988 from the Pliocene deposits of Big Sink, 
Wellington Caves, New South Wales (Hand et al., 1988). The 

remaining two extinct megadermatid taxa from Australia have 
not been given a formal binomial name—Dwornamor Variant 
from the middle Miocene Gag Site, Riversleigh (Hand, 1985); 
and Megadermatidae indet. from the middle Miocene Henk’s 
Hollow Site, Riversleigh (Hand, 1996). 

The extant Macroderma gigas (Dobson, 1880) is currently 
distributed across northern Australia, from the Pilbara and 
Kimberley regions of Western Australia, through the Top 
End of the Northern Territory and part of the Gulf Coastal 
and Mt Isa Inlier bioregions of the Northern Territory 
and northwestern Queensland, to Cape York, Queensland 
(Worthington Wilmer et al., 1999; Churchill, 2008). It 
contracted from areas further south in the Holocene (Molnar 
et al., 1984), and has declined further since the arrival of 
Europeans (Churchill & Helman, 1990; Churchill, 2008; 
Woinarski et al., 2014; Augusteyn et al., 2018; Armstrong 
et al., 2019). This taxon is also represented in the early 
Pleistocene deposit of Rackham’s Roost, Riversleigh (Hand, 
1996; Woodhead et al., 2016), as well as many sites of 
Pleistocene and Holocene age around Australia (Molnar et al., 
1984). In Western Australia, fossil and subfossil bat material 
has been discovered in very few localities, though M. gigas 
is a conspicuous presence in numerous limestone caves in 
the south-west corner (reviews in Cook, 1960; Bridge, 1975; 
Baynes et al., 1975; Molnar et al., 1984; Armstrong & Anstee, 
2000), and few of these caves are now used by bats of any 
species (Armstrong et al., 2005). Megadermatid fossils have 
also been discovered further north on Barrow Island and 
the Monte Bello Islands off the Pilbara coast (Ken Aplin, 
unpublished observations). 

Figure 1. Location of Dingo Gap (star) in the Kimberley region of Western Australia, 
plus Riversleigh World Heritage Area (cross), Wellington Caves in New South Wales 
(circle; type locality of Macroderma koppa), and various sites where subfossil and guano 
of M. gigas have been found (triangles) (information from Cook, 1960; Bridge, 1975; 
Molnar et al., 1984; Hand, 1996; Mahoney et al., 2008; and Ken Aplin unpublished 
data from islands of northwestern Western Australia). 



	 Armstrong et al.: New extinct species of Kimberley Macroderma	 163

More recently, a limestone deposit from Dingo Gap in 
the Kimberley region, north-west of Fitzroy Crossing (Fig. 
1), has produced material from a range of fossil mammals, 
which includes at least three species of bat. One of these 
is clearly a megadermatid, which is described here as a 
new species. The other bat species are not sufficiently well 
represented for identification or formal description, but they 
do provide context for the occurrence of the megadermatid 
bones and teeth. 

Methods
Scanning electron micrographs were taken with a Jeol 
JSM6060B microscope. Holotype and paratype material 
was examined and illustrated in comparison with a specimen 
of M. gigas from the CSIRO Australian National Wildlife 
Collection (ANWC), Canberra (CM568, male, collected 
from Mt Etna, Queensland), as well as material in the 
Western Australian Museum (WAM; three dentaries from 
M. gigas specimens M3415, M18284 and M18575; all from 
the Pilbara region of Western Australia). Descriptions are 
made in comparison with information in Hand (1985, 1995, 
1996) and Hand et al. (1988). Measurements were made 
from SEM images using the software ImageJ (Rasband, 
1997–2005; Abramoff et al., 2004). Measurements of the 
newly described species made for direct comparison with 
M. gigas correspond to a subset of those in Hand (1985) and 
are numbered accordingly (Fig. 2). Additional measurements 
made for descriptive purposes are indicated by letters (Table 
1). Higher level systematics follow Simmons & Cirranello 
(2020). Anatomical terminology follows Hand (1985), Hand 
et al. (1988), and Hand (1996).

Systematics

Chiroptera Blumenbach, 1779

Yinpterochiroptera Springer, Teeling, Madsen, 
Stanhope & de Jong, 2001

Rhinolophoidea Gray, 1825

Megadermatidae H. Allen, 1864

Macroderma Miller, 1906

Macroderma handae sp. nov. Aplin and Armstrong
urn:lsid:zoobank.org:act:018A744D-3AE6-44C0-988E-018C963EEE8E

Figs 3–8
Holotype. Fragment of left dentary containing a mostly intact 
M2, broken P4, M1 and M3, and alveoli of single-rooted P2 and 
C1 (WAM 2020.4.1; Figs 3A,B and 4A,C,E,G). Paratypes. A 
second fragment of left dentary with alveoli of incisors, C1, 
P2 and P4, and first two molars (WAM 2020.4.2; Fig. 3D,E); 
a third fragment of left dentary containing a worn M1 and one 
alveolus of M2 (WAM 2020.4.3; Fig. 3C); palatal fragment 
of left maxilla with lingual alveoli of P4 and M1 (WAM 
2020.4.4; Fig. 5B,C); fragment of right maxilla with alveoli 
of C1 and P4 (WAM 2020.4.5; Fig. 5A); right M1 (WAM 

2020.4.6; Fig. 6A,C); right M2 fragment (WAM 2020.4.10; 
Fig. 6E); anterior portion of right C1 (WAM 2020.4.7; Fig. 
7A); right C1 with broken paracone (principal cusp, sensu 
Hand, 1985; WAM 2020.4.9; Fig. 7C,D); left P2 (WAM 
2020.4.8; Fig. 8A,B,D); left M3 in poor condition (WAM 
2020.4.11; Fig. 4I); left P4 with damaged paracone (principal 
cusp; WAM 2020.4.12; Fig. 8E–H). All type material is 
lodged in the Western Australian Museum. 

Type locality, lithology, and age. Material was collected 
from a cemented accumulation of bone material that formed 
on the floor of a cave in a carbonate-rich stratigraphic 
sequence at Dingo Gap, Oscar Range, Kimberley region, 
Western Australia (17°40'S 125°13'E, Fig. 1). The location 
is part of the marginal reef slope and basinal facies of the 
northern face of the Oscar Range (Stephens & Sumner, 
2003). This range forms the northern edge of the Canning 
Basin, and is the remnant of an Upper Devonian marine 
reef complex. 

The bone accumulation was in a hard limestone matrix 
and consisted of teeth and small bone fragments of mammals, 
particularly rodents (Muridae: Hydromyini (sensu Smissen & 
Rowe, 2018); Rattus was absent). Further details of the fauna 
in this collection are not yet available. It is more likely to be an 
accumulation from a cave floor beneath a megadermatid bat 
roost site rather than a pellet accumulation from an owl given 
that larger jaw fragments were absent. Dental material from 
other bats was also present, including an unknown species 
of bat (Fig. 9A–D), canines from an emballonurid (probably 
Taphozous sp.; Fig. 9E–L), and a lower row of molars from 
an unidentified vespertilionid (Fig. 9M,N). Given the absence 
of Rattus, which is thought to have reached Australia by at 
least the mid-Pleistocene (Rowe et al., 2019), the material is 
aged tentatively as Pliocene or early Pleistocene. 

Diagnosis. Referred to the genus Macroderma Miller, 1906 
on the basis of the large size of the M1–2 (within the lower 
part of the size range of M. gigas and M. koppa; Table 1; cf. 
Hand, 1995: 52), the M1 with elongated heel, and markedly 
lingually displaced mesostyle (cf. Megaderma richardsi; 
Hand, 1995: 66); M1–3 paracristid (sensu Hand, 1995, 1996; = 
protocristid sensu Hand, 1985, who used both terms) longer 
than metacristid; M1–3 reduced metaconid contribution to the 
cristid obliqua; M1–3 robust and continuous anterior, labial (= 
buccal) and posterior cingula (see Hand, 1996: 373). 

Compared with Macroderma gigas—Maxilla fenestrated 
(Fig. 5B,C), but not to the degree seen in M. gigas (cf. 
Hand, 1985: 31); anterior part of dentary thickened, though 
relatively gracile compared with that of M. gigas (dentary 
depth below M2 protoconid less in M. handae; Table 1; Fig. 
3A,F); most molar measurements smaller than the average 
for M. gigas, or within the lower part of the size range 
(Table 1); the shape of the M1 protofossa (whose edges are 
defined by the preprotocrista and postprotocrista) is rounded 
rather than triangular (Fig. 6A–D); M2 paraconid lower, 
and protruding less anteriorly past the protoconid (trigonid 
less expanded anteriorly than in M. gigas); M2 protoconid 
relatively high and of proportionally greater area within the 
trigonid (more than half in occlusal view (Fig. 4A,B); and 
M2 talonid proportionally larger with respect to the trigonid 
(Fig. 4A,B). No protostyle cusp on P4, which is obvious in 
M. gigas (Fig. 8E,F).

Compared with M. koppa (see Hand et al., 1988: 
344–346)—Anterior upper tooth row relatively shorter in M. 
handae, alveoli of C1 and P4 indicating overlap of crowns 

http://zoobank.org/NomenclaturalActs/018A744D-3AE6-44C0-988E-018C963EEE8E/
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(Fig. 5A; cf. Hand et al., 1988: 345, fig. 2b,c); the shape of 
the M1 protofossa (with edges defined by the preprotocrista 
and postprotocrista) is rounded rather than triangular; molar 
measurements smaller than the values for M. koppa (Table 
1; cf. Hand et al., 1988: 349); anterior part of dentary 
relatively gracile compared with that of M. koppa (dentary 
depth below M2 protoconid less in M. handae; Table 1); M2 
paraconid relatively low, and protruding less anteriorly past 
the protoconid due to anterior compression of the trigonid 
(Fig. 4C,E; cf. Hand et al., 1988: 345, fig. 2a); M2 protoconid 
relatively high and of proportionally greater area within the 
trigonid (more than half in occlusal view; Fig. 4A); entoconid 

Table 1.  Measurements (mm; Fig. 2) of the holotype dentary and M2 (WAM 2020.4.1), and the paratypes M1 (WAM 
2020.4.6) and C1 (WAM 2020.4.7) of Macroderma handae sp. nov., in comparison with M. gigas and M. koppa (values 
and character numbers are from Hand, 1985: 23,25; Hand et al., 1988: 349; mean and range in parentheses; RR indicates 
measurements from M. gigas in Rackham’s Roost, see Hand, 1996: 370; letters in the first column represent measurements 
made in the present study only; * measurement from paratype WAM 2020.4.2).

		  holotype dentary and M2	 M. handae	 M. gigas	 M. koppa

	 3	 Dentary depth below M2 protoconid	 3.5, 3.42*	 3.92 (3.40–4.90) RR: 3.45	 4.2 (4.4–4.5)
	 10	 M2 length (sum measurements 14 + 15)	 3.21	 3.78 (3.41–4.17) RR: 3.27	 4.2 (3.9–4.1)
	 14	 M2 trigonid length	 1.73	 2.41 (1.91–2.79) RR: 2.10	 2.5 (2.3–2.5)
	 15	 M2 talonid length	 1.48	 1.41 (1.00–1.88) RR: 1.19	 1.6 (1.3–1.6)
	 21	 M2 trigonid width	 2.36	 2.38 (2.05–2.68)	 2.8 (2.4–2.6)
	 22	 M2 talonid width	 2.16	 2.31 (1.86–2.85)	 2.6 (2.2–2.5)
	 27	 M2 paracristid length	 1.44	 1.72 (1.38–1.92)	 —
	 28	 M2 metacristid length	 1.04	 1.25 (0.98–1.65)	 —
	 A	 M2 protoconid height (not illustrated)	 3.19	 —	 —
	 B	 Mental foramen width (not illustrated)	 0.53, 0.55	 —	 —

		  paratypes M1 and C1	 M. handae	 M. gigas	 M. koppa

	 14	 M1 labial (buccal) length	 3.53	 3.93 (3.36–4.40) RR: 3.36, 3.52	 4.1 (4.0–4.2)
	 18	 M1 lingual length	 3.13	 4.24 (3.60–4.76) RR: 3.59, 3.85	 4.0
	 21	 M1 width	 3.95	 4.15 (3.65–4.63) RR: 3.43, 3.94	 4.4 (4.1–4.3)
	 25	 M1 metacone apex to metastyle	 2.15	 2.73 (2.36–2.88)	 —
	 28	 M1 paracone to heel	 2.43	 3.20 (2.29–3.66)	 —
	 30	 M1 heel inflexions	 1.49	 2.34 (1.84–3.54)	 —
	 32	 M1 length through protocone	 1.70	 2.44 (2.08–2.90)	 —
	 C	 M1 protofossa width	 1.20	 —	 —
	 D	 M1 heel width	 1.37	 —	 —
	 E	 C1 height (not illustrated)	 4.29	 —	 —

Figure 2. Dental measurements taken from the left M2 and the right M1, based on Hand (1985). 

smaller than hypoconulid (Fig. 4E,G; cf. Hand et al., 1988: 
345, fig. 2a); the P2 is of a similar shape in both species (Fig. 
8A,B,D; cf. Hand et al., 1988: 345, fig. 2a).

Compared with M. malugara Hand, 1996—P2 absent in 
M. handae; slightly smaller size of M1 and M2 (Table 1; cf. 
Hand, 1996: 368); the shape of the M1 protofossa (whose 
edges are defined by the preprotocrista and postprotocrista) 
is rounded rather than triangular; M2 paraconid relatively 
low, and protruding less anteriorly past the protoconid due to 
anterior compression of the trigonid (Fig. 4A,C,E; cf. Hand, 
1996: 366–367, pl. 48k–m); M2 protoconid relatively high 
and of proportionally greater area of the trigonid (more than 
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Figure 3. Scanning electron micrographs of holotype and paratype material of Macroderma handae sp. nov. (A) lateral view of the left 
dentary of holotype WAM 2020.4.1 with mostly intact M2, broken P4, M1 and M3, and alveoli of single-rooted P2 and C1; (B) occlusal 
view of the holotype WAM 2020.4.1 anterior to the M2; (C) occlusal view of a fragment of left dentary, paratype WAM 2020.4.3; (D, E) 
lateral and occlusal view of a fragment of left dentary, paratype WAM 2020.4.2; (F) digital photograph of the left dentary of M. gigas 
WAM M18284. Scale bars 1 mm.
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Figure 4. Scanning electron micrographs of holotype and paratype material of Macroderma handae sp. nov. (A, C, E, G) occlusal, lingual, 
labial, and labial-oblique views of the left M2 from the holotype WAM 2020.4.1; (B, D, F, H) corresponding views of the left M2 of M. 
gigas ANWC CM568; (I) occlusal view of left M3, paratype WAM 2020.4.11; (J) left M3 of M. gigas ANWC CM568. Scale bars 1 mm.
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Figure 5. Scanning electron micrographs of paratype material of Macroderma handae sp. nov. (A) fragment of the right maxilla with 
alveoli of the C1 and P4, paratype WAM 2020.4.5; (B) palatal fragment of left maxilla with lingual alveoli of P4 and M1, paratype WAM 
2020.4.4; (C) detail of the blood vessel fenestrations in paratype WAM 2020.4.4; (D) probable wear striations on the M3, paratype WAM 
2020.4.11; (E) wear striations from M. gigas ANWC CM568. Scale bars 1 mm, except where indicated otherwise.



168	 Records of the Australian Museum (2020) Vol. 72

Figure 6. Scanning electron micrographs of paratype material of Macroderma handae sp. nov. (A, C) occlusal-oblique views of a right 
M1, paratype WAM 2020.4.6; (B, D) corresponding views of the right M1 of M. gigas ANWC CM568; (E) occlusal view of a fragment 
of a right M2, paratype WAM 2020.4.10; (F) corresponding view of the right M2 of M. gigas ANWC CM568. Scale bars 1 mm.



	 Armstrong et al.: New extinct species of Kimberley Macroderma	 169

Figure 7. Scanning electron micrographs of paratype material of Macroderma handae sp. nov. (A) anterior half of 
a right C1, paratype WAM 2020.4.7; (B) lingual view of a right C1 of M. gigas ANWC CM568; (C, D) labial and 
lingual views of a right C1 with a damaged paracone, paratype WAM 2020.4.9. Scale bars 1 mm.

half in occlusal view; Fig. 4A; cf. Hand, 1996: 366–367, pl. 
48m); greater development of M2 hypoconulid (Fig. 4A; cf. 
Hand, 1996: 366–367, pl. 48m). 

Compared with M. godthelpi Hand, 1985—C1 and M1 and 
M2 slightly larger in size in M. handae, and M2 with greater 
protoconid height (Table 1; cf. measurements in Hand, 1985: 
8–9; see also Sigé et al., 1982 for measurement key); taller 
and more robust C1 (Table 1E; Fig. 7A,C,D; cf. Hand, 1985: 
9,12, fig. 5a,b); loss of P2; proportionally greater contribution 
of the cingulum to the height of the P2 (cf. Hand, 1985: 13, 
fig. 6c); M2 paraconid relatively low, and protruding less 
anteriorly past the protoconid due to anterior compression 
of the trigonid (Fig. 4A,C,E; cf. Hand, 1985: 11, fig. 4a,b,c); 
M2 protoconid relatively high and of proportionally greater 
area of the trigonid (more than half in occlusal view; Fig. 
4A; cf. Hand, 1985: 11, fig. 4c).

Description. The anterior part of the dentary is thickened, 
though relatively gracile and shallower in depth compared 
to M. koppa and M. gigas, with likely two lower incisors 

per side (paratype WAM 2020.4.2; anterior detail not 
shown in Fig. 3A,B,D,E). Two premolars are present—P2 
and P4, in addition to the M1–2 (Fig. 3A,B), and the M3 
(Fig. 4I). 

There is marked extension posterolingually of the C1, 
similar to M. gigas (Fig. 7A–D). The P2 has a proportionally 
large cingulum, as can be seen in occlusal view, which gives 
the tooth the appearance of a “witches hat” when viewed 
from either the labial or lingual side (Fig. 8A,B,D). 

The M1 is shorter than, or equal in length to, the tall-
crowned M2 (Fig. 3A). The paracristid of the M2 is longer 
than the metacristid (Fig. 4A). There is relatively little 
contribution of the M2 metaconid to the cristid obliqua (Fig. 
4A). The M2 hypoconulid is situated posteriorly (Fig. 4A). 
The anterior, labial, and posterior cingula are robust and 
continuous (Fig. 4A,E,G). There is no development of the 
entostylid (Fig. 4A).

The maxilla is rugose and fenestrated, with grooves of 
blood vessels along the surface (Fig. 5B,C). The condition 
of the infraorbital foramen (a key feature separating M. 
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Figure 8. Scanning electron micrographs of paratype material of Macroderma handae sp. nov. (A, B, D) lingual, labial and occlusal views 
of a left P2, paratype WAM 2020.4.8; (C) labial view of the left P2 of M. gigas ANWC CM568; (E, G, H) occlusal, lingual-oblique, and 
posterior views of a damaged left P4, paratype WAM 2020.4.12; (F) occlusal view of a left P4 of M. gigas ANWC CM568. Scale bars 1 mm.
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Figure 9. Scanning electron micrographs of other unidentified and undescribed bat material recovered from the same deposit at Dingo 
Gap. (A–D) WAM 2020.4.13; (E–G) right C1 of an emballonurid, WAM 2020.4.14; (H) right C1 of an emballonurid, WAM 2020.4.15; 
(I, J) left C1 of an emballonurid, WAM 2020.4.16; (K, L) left C1 of an emballonurid, WAM 2020.4.17; (M, N) lingual and occlusal views 
of a fragment of dentary of a vespertilionid containing M1–M3 (M1 is on the right in both views), WAM 2020.4.18. Scale bars 1 mm.



172	 Records of the Australian Museum (2020) Vol. 72

Figure 10. Inferred relative phylogenetic position of Macroderma handae sp. nov. based on observable synapomorphic features (modified 
after Hand, 1996; numbers indicate the development of potential apomorphic character states, as detailed in that reference).

koppa [two foramina] and M. gigas [one foramen]; Fig. 5A) 
cannot be observed. 

The P2 is absent, as indicated by the absence of an 
alveolus between those of the canine and P4 (paratype WAM 
2020.4.5; Fig. 5A). The alveolus of C1 and anterobuccal/
anterolabial alveolus of P4 indicate that the crowns of these 
teeth overlapped in the tooth row (Fig. 5A). The heel of the 
P4 is broad, and the posterior edge is at right angles to the 
paracone (it is angled close to 45° lingually in M. gigas; Fig. 
8E–H). There is no protostyle cusp, which is obvious in M. 
gigas (Fig. 8E,F). 

The M1
 has a broad labial (buccal, sensu Hand, 1996) 

shelf, though narrower than that of M. gigas (Fig. 6A,B), and 
a markedly lingually displaced mesostyle (cf. Megaderma 
richardsi; Hand, 1995). The preprotocrista and postprotocrista 
are curved, giving the protofossa a rounded shape, which 
contrasts with the more triangular form of other Macroderma 
species (Hand et al., 1988: 345, fig. 2c; Hand, 1985: 10, fig. 
3c, 1996: 366–367, pl. 48d), and also Megaderma richardsi 
(Hand, 1995: pl. 1b,c). Both the M1 and M2 have tall crowns, 
and appear to be slightly compressed anteroposteriorly 
relative to Macroderma gigas (Fig. 6A–F). 

Unidirectional wear striations are observable on the left 
M3, which resemble those found on the teeth of the predatory 
M. gigas that crush the bones of prey (Fig. 5D,E). 

Etymology. Named in honour of Professor Suzanne (“Sue”)
J. Hand of the University of New South Wales, in recognition 
of her previous extensive work on fossils of this family, and 
her extraordinary, sustained, and ongoing work on fossils that 
has helped piece together the rich history of the Australasian 
mammal fauna. 

Discussion

Phylogenetic relationships
The phylogenetic position of Macroderma handae relative 
to most megadermatids can be estimated based on the 
presence of various synapomorphies that characterize 
subclades within the family (character sets 1–5 listed in Hand, 
1996: 373) (Fig. 10). It displays the following apomorphic 
conditions: (a) Characterizing it as part of the Megaderma–
Macroderma clade: M1 shorter than or equal in length to 
M2. (b) Distinguishing it from the Megaderma clade: M1 
with elongated heel, and markedly lingually displaced 
mesostyle (cf. Megaderma richardsi; Hand, 1995); in the M2: 
the paracristid longer than metacristid, reduced metaconid 
contribution to the cristid obliqua; robust, continuous 
anterior, labial and posterior cingula. (c) Distinguishing 
it from Macroderma godthelpi: large-sized, tall-crowned 
teeth; M2 with robust and broad anterior cingulum. (d) 
Distinguishing it from M. malugara: P2 absent; C1 markedly 
posterolingually-extended; M1-2 larger and more posteriorly-
situated hypoconulid; and preentocristid further reduced. The 
phylogenetic position of M. handae relative to M. koppa and 
M. gigas could not, however, be determined unambiguously 
based on the material from Dingo Gap because the condition 
of the infraorbital foramen (one or two foramina) and some 
other diagnostic features could not be observed.

Australian Pliocene megadermatid diversity
The new species M. handae represents the second Pliocene 
species of Macroderma discovered to date, together with 
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M. koppa. The age of the Big Sink Site of Wellington Caves 
in New South Wales has also been estimated as Pliocene, 
though it has not been dated other than on the basis of 
biocorrelation with better-dated faunas (reviews in Hand, 
1996; Dawson et al., 1999), and the inferred plesiomorphic 
condition of M. koppa (Dawson et al., 1999: 284). Both sites 
lack Rattus material, though they have representatives of the 
Old Endemic murid radiation (Hydromyini, sensu Smissen 
& Rowe, 2018), so their likely age is at least somewhere 
between the first Australian murid radiations and the invasion 
of Rattus (Aplin, 2006; Rowe et al., 2019). The species M. 
handae and M. koppa might have been contemporaneous, or 
alternatively they could have arisen at slightly different ages 
sometime from the late Miocene to early Pliocene. While M. 
handae appears slightly smaller on the basis of a few molar 
measurements, it is not markedly so. Thus, it might have been 
an earlier or allopatric taxon. A proposed common name for 
M. handae is the Kimberley False Vampire Bat.

Chiropteran assemblage
Several other bat species were recovered from the same 
assemblage that contained M. handae (Fig. 9). The lack 
of molars, or those in an unbroken condition, precluded 
identification to species, or species description. But on the 
basis of canine morphology (the position of cingular cusps), 
an emballonurid species, most likely representing the genus 
Taphozous, is present. A small vespertilionid species was 
also present. Based on the wear striations on the M3 of M. 
handae (Fig. 5D), probably derived from crushing the bones 
of vertebrates, these smaller bat species might well have been 
prey, as well as co-inhabitants of the roost. Body parts of 
the species Taphozous georgianus, Rhinonicteris aurantia 
and Vespadelus finlaysoni have all been observed in the prey 
accumulations of modern M. gigas in the Pilbara region of 
Western Australia and Northern Territory (Churchill, 2008; 
K. N. Armstrong personal observations). 
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