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Abstract. Surveillance of wildlife pathogens is critically important to the conservation of species and 
human health. However, few species of wildlife in biodiverse countries like Indonesia, especially endemic 
species in intact ecosystems, have been screened for most wildlife pathogens, including the abundant and 
diverse blood parasites in the family Trypanosomatidae. We used PCR and sequencing to screen for the 
presence of Trypanosoma infections in 616 native mammalian specimens (355 samples from 15 rodent 
species, 155 samples from 7 shrew species, and 96 samples from 12 bat species) collected in 2013 and 
2018 along an elevation and disturbance gradient in and adjacent to Cagar Alam Gunung Dako, Toli-Toli, 
Central Sulawesi. We identified Trypanosoma infections with an average prevalence of 22.1% across all 
species, 21.7% in rodents, 30.3% in shrews, and 10.4% in bats. Infections were dominated by sequences 
similar to T. cyclops in the Theileri clade, which accounted for 86.6% of infections and are most likely 
native trypanosomes to Sulawesi. The second most common trypanosome sequences matched cosmopolitan 
and probably introduced trypanosomes in the Lewisi clade. They accounted for 9.7% of infections in all 
mammals but were only detected in rodents of the family Muridae where they accounted for 16.9% of 
infections.  We also detected five infections in bats (50% of bat infections) by two trypanosomes from the 
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Cruzi clade, one matching T. dionisii and the other unassignable to a named species but with sequence 
similarity to a diverse clade of trypanosomes found in Neotropical bats, Australian marsupials and rodents, 
and Malagasy lemurs. We found significant differences in prevalence of the Theileri clade (T. cyclops) 
among elevations with higher infection rates in more intact and healthier rainforest. While no health 
impacts are evident from infections by these Theileri clade (T. cyclops) trypanosomes, their infections 
across mammalian orders including rodents, bats, shrews, primates and marsupials suggest that they may 
infect humans and domestic livestock. Our discovery of infections of rodents on Mt. Dako by introduced 
trypanosomes from the Lewisi clade and infections of bats by T. dionisii and an unnamed trypanosome 
from the Cruzi clade warrant further surveillance of trypanosome infections in wildlife of Sulawesi.

Abstrak [Bahasa Indonesia]. Pengamatan tentang patogen sangat penting dalam dunia konservasi dan 
kesehatan manusia. Namun, hingga saat ini penelitian tentang keberadaan kebanyakan parasit satwa liar 
masih sangat sedikit sekali, terutama pada spesies endemik di ekosistem yang utuh di negara dengan 
tingkat keanekaragaman biodiversitas yang tinggi seperti Indonesia. Ini termasuk pada kelompok parasit 
darah famili Trypanosomatidae yang memiliki tingkat keberagaman yang tinggi dan melimpah. Kami 
menggunakan teknik PCR untuk mengidentifikasi keberadaan infeksi famili Trypanosomatidae pada 616 
spesimen spesies mamalia asli (355 sampel dari 15 spesies Rodentia, 155 sampel dari 7 spesies celurut, 
dan 96 sampel dari 12 spesies kelelawar) yang dikoleksi pada tahun 2013 dan 2018 disepanjang lereng 
elevasi dan tingkat gangguan habitat di Cagar Alam Gunung Dako, Toli-Toli, Sulawesi Tengah dan 
daerah terdekat. Kami mengidentifikasi rata-rata tingkat prevalensi infeksi Trypanosoma sebesar 22,1% 
untuk semua spesies, 21,7% pada hewan pengerat, 30,3% pada celurut, dan 10,4% pada kelelawar. Infeksi 
Trypanosoma didominasi oleh sekuen yang mirip dengan T. cyclops di klade Theileri yang menyumbang 
86,6% dari total infeksi dan diduga sebagai Trypanosoma asli Sulawesi. Sekuen denganurutan tingkat 
infeksi paling umum kedua teridentifikasi sebagai spesies cosmopolitan dan kemungkinan spesies 
Tryponosoma introduksi di klade Lewisi. Kelompok ini menyumbang 9,7% di semua mamalia dan 
terbatas pada kelompok hewan pengerat dari famili Muridae dimana mereka menyumbang 16,9% dari 
total infeksi. Kami juga mendeteksi lima infeksi Trypanosoma dari klade Cruzi pada kelelawar (50% dari 
total infeksi pada kelelawar), dimana satu sampel teridentifikasi sebagai T. dionisii dan sampel lainnya 
belum diberikan nama, tetapi hasil sekuen memiliki kesamaan dengan sub-klade Australia dan Neobats. 
Kami menemukan perbedaan tingkat prevalensi yang signifikan dari klade Theileri (T. cyclops) pada 
berbagai ketinggian habitat dengan tingkat infeksi tertinggi pada hutan hujan tropis yang lebih utuh dan 
sehat. Meskipun tidak ada dampak kesehatan yang terbukti dari infeksi oleh trypanosoma klade Theileri 
(T. cyclops), ditemukannya infeksi jenis tersebut pada beberapa Ordo Mamalia, termasuk pada kelompok 
hewan pengerat, kelelawar, celurut, primata, dan hewan berkantung mengindikasikan bahwa parasit 
tersebut kemungkingkan dapat menginfeksi manusia dan hewan ternak. Ditemukannya hewan pengerat 
yang terinfeksi Trypanosoma introduksi di Gunung Dako dari klade Lewisi dan infeksi kelelawar oleh T. 
dionisii serta beberapa species Trypanosoma dari clade Cruzi yang belum dinamai, menunjukkan bahwa 
pengamatan lebih lanjut terhadap infeksi trypanosoma pada satwa liar Sulawesim masih perlu dilakukan.

Introduction
Species in the genus Trypanosoma are protists in the 
family Trypanosomatidae (Euglenozoa: Kinetoplastea) 
(Kostygov et al., 2021). All members of this family are 
known to be parasitic in vertebrates. Trypanosoma, in 
particular, are known to infect a wide range of vertebrates 
across almost all classes (Hamilton et al., 2007; Botero 
et al., 2013; Thompson et al., 2014; Cooper et al., 2017; 
Calzolari et al., 2018). While trypanosome infections have 
been detected in fewer than 150 mammalian species, they 
probably infect all mammalian species, of which there are 
over 6000 (Thompson et al., 2014; Winterhoff et al., 2020). 
Within mammals, some Trypanosoma are exclusive to 
certain orders, such as T. lewisi which infects only rodents 
(Rodentia) and is associated with the spread of invasive 
rodents such as black rats, Rattus rattus (Pumhom et al., 
2014). Other species infect a wide range of mammals, such 
as T. cruzi which is most common in bats but also known 
to infect other mammals (Cooper et al., 2017). However, 
most mammals have not been screened for trypanosomes, 
including widespread groups such as shrews. Many species 
of Trypanosoma are yet to be formally described and many 
infections are detected by DNA methods that cannot always 

assign samples to species. Thus, Trypanosoma species are 
routinely organized into major phylogenetic clades including 
the Theileri, Lewisi, Cruzi, and Brucei clades (Cooper et al., 
2017). The names of these clades are based on some of the 
most common and significant Trypanosoma species found in 
mammals (i.e., T. theileri, T. lewisi, T. cruzi, and T. brucei) 
but they include numerous other species many of which have 
not been formally described (Cooper et al., 2017).

Some species of Trypanosoma cause clinical symptoms 
in humans such as T. brucei, which causes sleeping sickness 
and Chagas disease (Cooper et al., 2017). In Indonesia, the 
disease trypanosomiasis, caused by the introduced species T. 
evansi, that originated in Africa, inflicts considerable losses 
to livestock such as horses, cows, and buffaloes (Wardhana 
& Savitri, 2018; Setiawan et al., 2021). Trypanosoma 
evansi infects livestock around the world and has spread 
to almost all major islands in Indonesia including Sulawesi 
(Dieleman, 1986; Luckins, 1998; Setiawan et al., 2021). 
Trypanosoma species in the Theileri clade and closely related 
to T. cyclops (Weinman, 1972), were detected recently on 
Sulawesi infecting endemic rodents with high prevalence 
(Winterhoff et al., 2020). Given that the island of Sulawesi 
is located between the Asian and Australian continental 
shelves, it is particularly relevant to the biogeography 
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and spread of pathogens between the continents, with T. 
cyclops an example. Trypanosoma cyclops was originally 
described from an infection in a Malaysian primate, Macaca 
nemestrina (Weinman, 1972) and has been detected with 
genetic methods from rodents and marsupials from Sri 
Lanka to Australia (Thompson et al., 2014; Cooper et 
al., 2017; Winterhoff et al., 2020). They are most likely 
endemic to these areas, including across Indonesia, and are 
likely to infect a wide range of mammalian hosts. Species 
of trypanosomes that are spread by introduced rodents 
(e.g., Rattus spp.) in the Lewisi clade were also detected on 
Sulawesi and infecting endemic rodents, albeit at much lower 
prevalence than the endemic T. cyclops (Winterhoff et al., 
2020). Given the widespread distribution of invasive rodents 
across Indonesia and on the island of Sulawesi (e.g., Rattus 
exulans, R. tanezumi, R. norvegicus, and Mus musculus), T. 
lewisi is likely to be distributed throughout Indonesia. 

Introduced parasites are threats to native species 
worldwide, especially island endemics. Some species of 
trypanosome cause diseases in wildlife leading to population 
declines. For example, T. copemanii infections are linked to 

the rapid decline of populations of an Australian marsupial, 
the woylie (Bettongia penicillata) (Thompson et al., 
2014). Zoonotic diseases threatening wildlife can emerge 
through “spill-over” or “spill-back” from invasive species 
and domesticated animals, especially when an infected 
population with a high pathogen prevalence comes into 
contact with a novel host population (Thompson, 2013). 
Transmission of diseases from introduced species to novel 
wildlife hosts also pose risks of emerging diseases infecting 
domestic animals and/or humans (Cleaveland et al., 2001; 
Gortázar et al., 2007; Martin et al., 2011).

In this study, we used PCR and sequencing to identify 
trypanosome infections in native rodents, bats, and 
shrews on a protected mountain of Sulawesi where 
trypanosome communities have not been assessed. Notably, 
no Trypanosoma infection has ever been reported from shrews 
in Indonesia, and this is the first study to include these host 
species from Indonesia. To test if infection rates are correlated 
with forest disturbance or with proximity to humans and their 
commensal species, we sampled from village to peak along 
an elevation gradient spanning nearly 2000 m.

Figure 1.  (A) Location of Gunung Dako Cagar Alam on Sulawesi Island Indonesia. (B) Detail of elevational transects surveyed in 2013 
(black symbols) and 2018 (grey symbols). The villages of Malangga Selatan and Kinopasan are indicated with stars. Camps are indicated 
with triangles. The approximate centroids of traplines are indicated with squares. Topographic lines are marked at 100 m intervals. 
Elevational bins used in this study are labelled with roman numerals with topographic lines at 800, 1300, and 1800 m in bold.
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Material and methods

Sampling of small mammals
In this study we surveyed small mammals (rodents, bats, 
and shrews) in and adjacent to Cagar Alam Gunung Dako 
(Mount Dako Nature Reserve), Sulawesi, Indonesia (Fig. 
1). The reserve is located in the Galang District of the 
Toli-Toli Regency at the northern end of the Central Sulawesi 
province. It has an area of 197 km2 and surrounds the peaks 
of Mount Dako (2,159 m asl) and the slightly taller Mount 
Galang (2,253 m asl). Surveys were conducted in March 
2013 and July 2018 along two elevational transects starting 
from the villages of Malangga Selatan and Kinopasan, 
respectively. Surveys were conducted using a combination 
of Sherman traps, snap traps, mistnets, and pitfall traps. 
We merged trap lines into four elevational bins (Fig. 1), 
reflecting a gradient of human impacts from village edge to 
the peak of Mt. Galang. The lowest elevational bin (300–800 
m asl) was adjacent to villages, farms, and plantations. The 
second elevational bin was in secondary forest above active 
plantations (801–1300 m asl). The third (1301–1800 m 
asl) and fourth (1801–2225 m asl) elevational bins were in 
largely intact forest well inside the reserve. While preparing 
specimens, liver and other tissues were perfused with RNA 
later or ethanol and stored in liquid nitrogen until returning 
from the field (Table S1). Sampling was led by the Research 
Center for Biology, Indonesian Institute of Sciences (LIPI) 
with permits from the Indonesian Ministry of Technology 
and Higher Education (RISTEK), along with authorization 
from the Ministry of Environment and Forestry Indonesia 
(Central Sulawesi BKSDA). Procedures followed animal 
ethics permit MVAEC-15002.

Molecular detection and sequencing
To identify samples infected with Trypanosoma, we extracted 
genomic DNA from liver tissue using QIAextractor (DX 
reagents and plasticware), QIAGEN DNeasy blood and 
tissue kits, or Wizard SV 96 Genomic DNA Purification 
Systems following manufacturer’s guidelines (QIAGEN 
Inc., Valencia, CA, USA; Promega, Madison, WI, USA). 
We used a universal set of trypanosome primers targeting 
ca. 906 bp fragments from the 18S gene region following the 
PCR protocol previously described (Winterhoff et al., 2020). 
PCR reactions were screened using electrophoretic gels 
and those with visible bands in the correct size range were 
considered a positive infection. Each of these was purified 
using ExoSAP (USB Corporation, Cleveland, Ohio, USA) 
and sequenced on an Applied Biosystems 3730 Automatic 
DNA Sequencer (Applied Biosystems, Foster City, 
California, USA) using PCR primers. Successful sequences 
were identified to genus and species where possible using the 
nucleotide BLAST tool within the NCBI GenBank database. 
DNA sequences are available in GenBank under accessions 
OR036096–OR036228.

Statistical analysis
To examine how trypanosome infections were related 
to ecological factors, we tested the relationship between 
prevalence and elevation. We estimated trypanosome 
prevalence (number infected vs. non-infected) for each 
trypanosome clade with more than 10 infections (i.e., 

Theileri and Lewisi) in each elevational bin and tested for 
significant differences among bins using a Chi-square test of 
independence. In the case where significant differences were 
found among elevation bins, we used a Chi-square goodness 
of fit test to determine whether the number of infections 
within a bin was significantly different than random. For 
both tests, we used the “chisq.test” function from the “stats” 
package in R  (version 3.6.3, R Core Team, 2020).

Results
We collected and screened 616 specimens from three 
mammalian orders for trypanosome infections (Table 1; Table 
S1). Ten samples with positive PCR bands (eight shrews, 
two rodents) failed to produce reliable sequences that could 
be assigned to a trypanosome clade. We excluded these 
from our sample sizes leaving 606 samples comprising 355 
rodents (16 species), 155 shrews (7 species), and 96 bats (11 
species). We detected identifiable trypanosome infections 
by sequencing in 134 samples including in seven species 
of rodents (Bunomys chrysocomus, Frateromys fratrorum, 
Haeromys minahassae, Maxomys musschenbroekii, Rattus 
hoffmanni, Taeromys dominator, and T. taerae), five species 
of shrews (Crocidura balete, C. elongata, C. lea, C. nigripes, 
C. pseudorhoditis), and six species of bats (Cynopterus 
brachyotis, Macroglossus minimus, Rhinolophus celebensis, 
Rousettus celebensis, Thoopterus nigrescens, and Tadarida 
sarasinorum). Excluding samples that failed at sequencing, the 
average prevalence across all samples was 21.9%. Shrews had 
the highest prevalence with 30.3% of specimens infected by 
Trypanosoma compared to 21.4% in rodents and 10.4% in bats.

Based on sequences of the 18s rDNA gene we identified 
infections by trypanosomes from three major clades (Cooper 
et al., 2017); the Theileri, Lewisi and Cruzi clades (Table 
2). Sequences of the Theileri clade matched closely (> 99% 
sequence similarity) to T. cyclops, originally described from 
Malaysian macaques, and previously detected in terrestrial 
leeches, frogs, marsupials and rodents from mainland Asia, 
Sulawesi, and Australia (Cooper et al., 2017; Winterhoff et 
al., 2020). These Theileri clade (T. cyclops) infections were 
the most common with a prevalence of 19.1% (116 infected 
individuals) across all samples we screened accounting for 
87.2% of all infections. They were also the most common 
infection in each of the three orders infecting 30.3% of 
shrews, 18.0% of rodents, and 5.2% of bats. 

Lewisi clade trypanosomes were the next most commonly 
detected infection accounting for 9.0% of infections and 
detected in 2.0% of samples. All infections were detected 
in rats and mice (family Muridae) where they comprised 
15.8% of infections with 3.4% of individuals infected. We 
did not detect Lewisi clade infections in squirrels (family 
Sciuridae, n = 14). Lewisi clade sequences were nearly all 
identical and indistinguishable from several named species 
of Trypanosoma in the Lewisi clade with > 99% sequence 
similarity and which cannot be differentiated by 18s rDNA 
sequences alone. These included T. lewisi, T. kuseli, T. 
otospermophili, T. musculi, T. microti and T. rabinowitschae  
(see phylogeny in Winterhoff et al., 2020).

Two Cruzi clade trypanosomes were detected in five 
bat samples with a prevalence of 5.2% among bats. One 
sample, infecting Tadarida sarasinorum, had 99% sequence 
similarity to T. dionisii, a close relative of T. cruzi and T. 
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erneyi (Schizotrypanum subclade of Espinosa-Álvarez 
et al., 2018). The remaining four infections, detected 
in Rhinolophus celebensis, Rousettus celebensis, and 
Thoopterus nigrescens, had identical sequences but were 
more distantly related in the Cruzi clade (near Australian 
and Neobats subclades of Espinosa-Álvarez et al., 2018) 
with 98% sequence similarity to T. livingstonei, T. ralphi, 
T. grayi, and T. terrestris, but not clearly assignable to any 
named species. 

The average prevalence of any trypanosome infection 
varied across elevational bins with the highest prevalence 

at middle elevations (range 10.8–26.2%; Table 3). However, 
this pattern was driven primarily by the prevalence of Theileri 
clade (T. cyclops) infections (range 3.3–24.1%; Table 3). A 
chi-square test for independence showed that Theileri clade 
(T. cyclops) infections were not randomly distributed among 
elevational bins ( χ2 = 25.124, p < 0.0001) and largely because 
infections in the lowest elevational bin (4 of 120 specimens) 
were significantly less than expected (chi-square goodness 
of fit, χ2 = 18.97, p < 0.0001). Infections were slightly but 
not significantly higher than expected at middle elevational 
bins and exactly as expected at the highest elevational bin. 

Table 1.  Sample sizes of mammalian species screened in this study, elevation range of samples, and number of samples 
where infections were detected. Samples with “sp.” were not identified to species for this study. Generic taxonomy for 
murines follows Handika et al. (2021). Taxonomy for Crocidura follows Esselstyn et al. (2021). 

	 				    Infections

	 Order	 Family	 Species	 Elevation range 	 Sample	 Theileri	 Lewisi	 Cruzi
				    (m asl)	 size	 clade	 clade	 clade

	 Chiroptera	 Hipposideridae	 Hipposideros sp.	 560–700	 1	 0	 0	 0
	 Chiroptera	 Megadermatidae	 Megaderma spasma	 560–700	 1	 0	 0	 0
	 Chiroptera	 Molossidae	 Tadarida sarasinorum	 1740–1750	 3	 0	 0	 1
	 Chiroptera	 Pteropodidae	 Chironax melanocephalus	 560–1240	 5	 0	 0	 0
	 Chiroptera	 Pteropodidae	 Cynopterus brachyotis	 939–1750	 33	 4	 0	 0
	 Chiroptera	 Pteropodidae	 Macroglossus minimus	 939–965	 3	 1	 0	 0
	 Chiroptera	 Pteropodidae	 Rousettus celebensis	 310–965	 38	 0	 0	 1
	 Chiroptera	 Pteropodidae	 Styloctenium wallacei	 1560–1630	 1	 0	 0	 0
	 Chiroptera	 Pteropodidae	 Thoopterus nigrescens	 310–330	 5	 0	 0	 1
	 Chiroptera	 Rhinolophidae	 Rhinolophus celebensis	 310–1750	 5	 0	 0	 2
	 Chiroptera	 Vespertilionidae	 Myotis sp.	 750–975	 1	 0	 0	 0
	 Chiroptera	 All families	 all species	 310–1750	 96	 5	 0	 5
		  						    
	 Eulipotyphla	 Soricidae	 Crocidura balete	 1560–2170	 4*	 1	 0	 0
	 Eulipotyphla	 Soricidae	 Crocidura caudipilosa	 560–1965	 12	 0	 0	 0
	 Eulipotyphla	 Soricidae	 Crocidura elongata	 560–2170	 30*	 9	 0	 0
	 Eulipotyphla	 Soricidae	 Crocidura lea	 750–1630	 13*	 8	 0	 0
	 Eulipotyphla	 Soricidae	 Crocidura nigripes	 310–1850	 35	 8	 0	 0
	 Eulipotyphla	 Soricidae	 Crocidura pseudorhoditis	 560–2170	 60*	 21	 0	 0
	 Eulipotyphla	 Soricidae	 Crocidura quasielongata	 310–330	 1	 0	 0	 0
	 Eulipotyphla	 Soricidae	 all species	 310–2170	 155	 47	 0	 0
		  						    
	 Rodentia	 Muridae	 Bunomys chrysocomus	 310–1390	 31	 2	 0	 0
	 Rodentia	 Muridae	 Frateromys fratrorum	 750–1750	 58*	 17	 1	 0
	 Rodentia	 Muridae	 Haeromys minahassae	 410–1630	 2	 0	 1	 0
	 Rodentia	 Muridae	 Hyorhinomys stuempkei	 1560–1965	 3	 0	 0	 0
	 Rodentia	 Muridae	 Margaretamys sp.	 2200–2230	 1	 0	 0	 0
	 Rodentia	 Muridae	 Maxomys dollmani	 1240–1965	 4	 0	 0	 0
	 Rodentia	 Muridae	 Maxomys hellwaldii	 410–450	 1	 0	 0	 0
	 Rodentia	 Muridae	 Maxomys musschenbroekii	 550–2170	 113	 24	 2	 0
	 Rodentia	 Muridae	 Rattus facetus	 550–2170	 19	 0	 0	 0
	 Rodentia	 Muridae	 Rattus hoffmanni	 310–1750	 45	 2	 8	 0
	 Rodentia	 Muridae	 Taeromys callitrichus	 560–700	 2	 0	 0	 0
	 Rodentia	 Muridae	 Taeromys celebensis	 1740–1765	 1	 0	 0	 0
	 Rodentia	 Muridae	 Taeromys dominator	 310–2230	 27	 4	 0	 0
	 Rodentia	 Muridae	 Taeromys taerae	 975–2170	 34*	 15	 0	 0
	 Rodentia	 Sciuridae	 Prosciurillus murinus	 310–1755	 14	 0	 0	 0
	 Rodentia	 all families	 all species	 310–2170	 355	 64	 12	 0
	 all orders	 all families	 all species	 310–2170	 606	 116	 12	 5
	 *	 Sample sizes exclude 10 samples with positive PCR bands that failed at sequencing. 
		  Crocidura balete (n = 1), C. elongata (n = 4), C. lea (n = 2), C. pseudorhoditis (n = 1), Frateromys fratrorum (n = 1), and Taeromys taerae (n = 1).
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For Lewisi clade infections, we calculated prevalence based 
on murid rodents alone as these trypanosomes only infected 
rodents in this family. While the highest rates of infections 
occurred at the lowest elevation (6 of 63 specimens; Table 
3) and no infections occurred at the highest elevation, a chi-
squared test for independence found that infections were only 
marginally significantly different from randomly distributed 
among elevational bins ( χ2 = 4.864, p = 0.182). For the Cruzi 
clade, we calculated prevalence based only on bat specimens 
as these trypanosomes only infected bats. The small sample 
size of Cruzi infections precluded any statistical analysis. 
Of the five detections of Cruzi clade trypanosomes, three 
were at the lowest elevational bin and one each at the middle 
elevational bins but percent infections were consistently 
low, ranging from 3.7–6.5% of specimens. No bats were 
collected from the highest elevational bin hence prevalence 
could not be calculated.

Discussion
Our study demonstrates the breadth of Trypanosoma 
infections in native bats, shrews, and rodents on Sulawesi, 
Indonesia (Winterhoff et al., 2020). Our sampling 
from Mount Dako, detected Trypanosoma infecting 17 
mammalian species native to Sulawesi, including seven 
murid rodent species (50% of species), five shrew species 
(71% of species), and five bat species (45% of species). The 
trypanosome infections we detected fell within three of the 
four major Trypanosoma clades known to infect mammals: 
Theileri clade (T. cyclops) which contains trypanosomes 
endemic to placental mammals and marsupials in Malaysia, 
Sri Lanka and Australia (Hamilton et al., 2005; Pumhom 
et al., 2014); Lewisi clade which contains the invasive 
and globally distributed T. lewisi; and Cruzi clade which 
contains trypanosomes from Old and New World bats, South 
American mammals and Australian marsupials (Hamilton 
et al., 2012). Consistent with Winterhoff et al. (2020), 
infections were dominated by the Theileri clade (T. cyclops), 
which accounted for > 86% of infections. Notably, we did 
not detect any trypanosomes from the Brucei clade, which 
contains the introduced Trypanosoma evansi known to infect 
cattle on Sulawesi (Setiawan et al., 2021).

Theileri clade (T. cyclops) infections were present in 
all three host orders sampled indicating that all three are 
reservoirs for infection. Shrews exhibited the highest 
prevalence of Theileri clade (T. cyclops) infections being 
nearly two times higher than in rodents and nearly six times 
higher than in bats suggesting that native shrews are an 

important and unrecognized reservoir for infection. The 
occurrence of Theileri clade (T. cyclops) infections in three 
distantly related mammalian orders suggests that these 
trypanosomes infect a broad range of other mammalian 
species on Sulawesi. Prevalence of Theileri clade (T. 
cyclops) trypanosomes was highest in intact forest at mid-
to-upper elevations lending further support to the notion 
that they are widespread parasites of endemic mammalian 
communities on Sulawesi (Winterhoff et al., 2020). 
Documentation of widespread infection by Theileri clade 
(T. cyclops) trypanosomes across rodents, bats, shrews, 
primates and marsupials suggests that these trypanosomes 
can infect most other mammalian species including 
humans and domesticated animals. While Theileri clade 
(T. cyclops) trypanosomes were more prevalent at higher 
elevations on Mount Dako, they also were present at the 
lowest elevations where endemic host species overlap 
with humans and domesticated animals. Theileri clade 
(T. cyclops) trypanosomes have not been recorded in 
humans, domesticated animals or other introduced species 
on Sulawesi. However, atypical human cases of other 
Trypanosoma (e.g., T. lewisi) occur elsewhere in Southeast 
Asia (Pumhom et al., 2015) and few relevant samples on 
Sulawesi have been screened for Trypanosoma with PCR 
methods that could detect the Theileri clade. A recent study 
screening 100 cattle on Sulawesi did not detect any Theileri 
clade sequences, while detecting three sequences of the 
introduced T. evansi (Setiawan et al., 2021). However, 
these cattle were sampled in communities near the large 
urban centre of Makassar and far from native mammalian 
communities where Theileri clade (T. cyclops) is likely 
to be a reservoir. Cattle or other domesticated animals 
may be at greater risk of disease spillover where they are 
closer to intact and more diverse mammalian communities. 
Disease spillover from reservoir host species to naïve hosts 
can lead to higher virulence in naïve hosts compared to 
reservoir hosts, including diseases caused by Trypanosoma 
(Wyatt et al., 2008; Truc et al., 2013; Pumhom et al., 
2014). However, to our knowledge, no illness in humans, 
domesticated animals or wildlife has been associated with 
infection by the Theileri clade (T. cyclops). Consequently, 
further research is needed into the potential for disease 
transmission and associated health impacts to humans, 
domesticated animals, and wildlife from Theileri clade (T. 
cyclops) trypanosomes. 

Consistent with previous sampling on Sulawesi, Lewisi 
clade trypanosomes were only detected in murid rodent 
species (Winterhoff et al., 2020). Among the Lewisi clade, 
T. lewisi is a cosmopolitan rat-specific trypanosome, whereas 

Table 2.  Sample sizes of hosts and prevalence of each trypanosome clade for each mammalian order. Sample sizes are 
counts whereas prevalences are percentages. Sample sizes exclude failed sequences noted in Table 1.

		  Sample size	 Theileri clade	 Lewisi clade	 Cruzi clade
			   (T. cyclops)	

	 	  ♂	 ♀	 na	 ♂	 ♀	 na	 all	 ♂	 ♀	 all	 ♂	 ♀	 %

	 Rodentia	 175	 175	 5	 28	 35	 1	 18.0%	 5	 7	 3.4%	 0	 0	 0
	 Eulipotyphla	 71	 80	 4	 25	 21	 1	 30.3%	 0	 0	 0	 0	 0	 0
	 Chiroptera	 34	 61	 1	 2	 3	 0	 5.2%	 0	 0	 0	 4	 1	 5.2%
	 all orders							       19.1%			   2.0%			   0.8%
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other Lewisi clade species are known to infect other rodent 
species (Hamilton et al., 2005, 2007). Thus, it is likely that 
the Lewisi clade trypanosomes infecting endemic murid 
rodents on Sulawesi were introduced with introduced murid 
rodents (e.g., Mus musculus, Rattus exulans, R. norvegicus 
or R. rattus; Winterhoff et al., 2020). Prevalence of Lewisi 
clade trypanosomes was highest at the lowest elevations 
sampled corresponding to areas of greatest human habitat 
disturbance. This also is consistent with it being introduced 
through the spread of introduced and commensal murid host 
species which are most common around human disturbance 
(Pumhom et al., 2014; Salzer et al., 2016). While none of 
these introduced rodents were sampled in this study they 
were observed in the village where limited trapping was 
conducted. Nearly 70% of Lewisi clade infections occurred 
in an endemic Rattus species (R. hoffmanni) including all 
infections at the lowest elevation. However, Lewisi clade 
infections were also detected in three other native murid host 
genera (i.e., Frateromys, Haeromys and Maxomys), whereas 
surveys on Mts Latimojong and Bawakaraeng detected 
Lewisi clade infections from endemic species of Rattus 
and Bunomys (Winterhoff et al., 2020). In addition, Lewisi 
infections were detected in specimens collected in relatively 
intact forest within Mount Dako Cagar Alam (nature reserve) 
at elevations up 1750 m asl, where introduced murids were 
not detected, suggesting that these introduced trypanosomes 
are penetrating protected areas of Sulawesi. On Mount 
Bawakaraeng, Lewisi clade infections were also detected 
at the highest elevations (> 2800 m asl), but where human 
disturbance was also substantial and introduced R. exulans 
were present (Winterhoff et al., 2020). Spillover of T. lewisi 
from introduced Rattus species to endemic murid rodents has 
been reported in other forest habitats including neighbouring 
landmasses in the Indo-Australian region (Dobigny et al., 
2011; Milocco et al., 2013; Pumhom et al., 2014; Salzer et 
al., 2016). This transmission risk may have implications 
for native wildlife health, as virulence of T. lewisi may 
increase in naïve hosts or affect host susceptibility to other 
infections (Brown, 1915; Hoare, 1972; Averis et al., 2009; 
Milocco et al., 2013). Where introduced, the prevalence of 
T. lewisi in native rodent hosts can exceed the prevalence 
of native trypanosomes (Salzer et al., 2016). However, the 
prevalence of Lewisi clade infections in endemic rodent host 
species of Mount Dako (this study) and two other mountains 

of Sulawesi (Winterhoff et al., 2020) is much lower than 
for the Theileri clade (T. cyclops). Further research into the 
distribution patterns of Lewisi clade trypanosomes including 
penetration into intact native ecosystems and their potential 
epidemiological effects on native wildlife is required.

Our limited sampling of bats on Sulawesi suggest that 
bats are hosts to numerous undocumented species of Cruzi 
clade trypanosomes that occur at low prevalence and will 
require much greater sampling to detect. While most species 
of Cruzi clade trypanosomes infect bats exclusively, others 
infect a wide range of mammalian hosts (e.g., T. cruzi and 
T. rangeli; Espinosa-Álvarez et al., 2018), and spillover 
effects to wildlife, humans or domesticated animals are 
possible (Maeda et al., 2012; Dario et al., 2016, 2017). 
Like Lewisi clade trypanosomes, we detected Cruzi clade 
trypanosomes in the most samples at the lowest elevations 
(n  =  3), but they occurred across all elevations where 
bats were sampled with no statistical differences detected 
among elevations. We detected one sequence of the Cruzi 
clade that was nearly identical to T. dionisii, which is the 
first record of this cosmopolitan bat-infecting trypanosome 
from Indonesia. Trypanosoma dionisii has previously been 
detected in a broad range of bat species from North and 
South America, Africa, Europe, China, Japan and Australia, 
so its presence on Sulawesi is not surprising (Hamilton et 
al., 2012; Espinosa-Álvarez et al., 2018; Mafie et al., 2019; 
Wang et al., 2019; Austen et al., 2020; Clément et al., 2020). 
While T. dionisii is generally considered non-pathogenic in 
bats, it has the potential to infect other mammalian species 
including humans with unknown epidemiological effects 
(Maeda et al., 2012; Dario et al., 2016, 2017). The four 
other Cruzi clade sequences detected in this study were 
identical to each other but not clearly related to any known 
Cruzi clade species. They are closest to several species in 
the “Australian” and “Neobats” subclades (as defined by 
Espinosa-Álvarez et al., 2018) that include trypanosomes 
found in Neotropical bats, Australian marsupials and 
rodents, and Malagasy lemurs. Further sampling is required 
to determine the taxonomy, prevalence, transmissibility, 
and implications of Cruzi clade trypanosomes in wildlife, 
in particular in bat hosts where their ecological traits, 
behaviours and global distribution increase the chances of 
parasitic spill-over to new host species  (Melaun et al., 2014; 
Lima et al., 2015; Clément et al., 2020).

Table 3. Mammalian host sample sizes and prevalence of Trypanosoma and Trypanosoma clades in each elevational bin. 
Prevalence of any Trypanosoma and of the Theileri clade (T. cyclops) were calculated using sample sizes of all mammalian 
species. For the Lewisi clade, prevalence was calculated considering only sample sizes of murid species. For the Cruzi clade, 
prevalence was calculated considering only sample sizes of bats. Sample sizes exclude failed sequences noted in Table 1.

			   Elevational bins (m asl)
			   I	 II	 III	 IV
			   (300–800)	 (801–1300)	 (1301–1800)	 (1801–2225)

	 sample size (all mammals)	 120	 97	 336	 53
	      prevalence Trypanosoma (all mammals)	 10.8%	 23.7%	 26.2%	 18.9%
	      prevalence Theileri clade (all mammals)	 3.3%	 21.6%	 24.1%	 18.9%
					   
	 sample size (Muridae)	 63	 50	 211	 17
	      prevalence Lewisi clade (Muridae)	 9.5%	 2.0%	 2.8%	 0
					   
	 sample size (Chiroptera)	 46	 23	 27	 0
	      prevalence Cruzi clade (Chiroptera)	 6.5%	 4.3%	 3.7%	 na
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