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Abstract. Our understanding of koala retrovirus (KoRV) has advanced dramatically in recent years. Cross-
sectional studies examining hundreds of wild koalas (Phascolarctos cinereus) from populations across 
their natural Australian range (Queensland–New South Wales–Victoria) have shed new light on KoRV 
abundance and diversity in the wild. A single strain of KoRV (the originally characterized Hanger strain 
from 2000) appears to be the dominant KoRV strain within koalas, endogenous in northern populations and 
the predominant exogenous strain in southern populations. Alongside this strain are potentially exogenous 
variants representing both intact and defective versions of some of the many recognized KoRV subtypes 
(KoRV-A to KoRV-M). The patterns of these may suggest a transition from endogenous KoRV in the 
north to exogenous KoRV in the south, occurring in southern New South Wales. They also highlight 
how actively the hypervariable region of the envelope gene of KoRV is diversifying, with fragmented 
koala populations across the country containing unique and distinctive KoRV proviral profiles. As more 
koala populations are examined with increasingly sensitive and specific genetic tools, our understanding 
of KoRV is poised to continue to evolve as quickly as the virus itself.

Introduction
Koala retrovirus (KoRV) is known to exist both endogenous
ly and potentially exogenously in koalas (Phascolarctos 
cinereus) (Hanger et al., 2000; Quigley & Timms, 2020). 
At some point in the last 49,900 years, KoRV began 
endogenizing or permanently incorporating its provirus into 
koala germline genomes in the northern Australian koala 
population (Tarlinton et al., 2006; Ishida et al., 2015). In 
parallel, within almost all koala populations across Australia, 
potentially exogenous strains of KoRV have continued to 
diversify into 13 recognized subtypes (KoRV-A to -M, 
based on differences in the receptor binding domain region 
of the envelope gene (Shojima et al., 2013; Xu et al., 2013; 
Xu et al., 2015; Chappell et al., 2017; Blyton et al., 2021). 
Targeted studies of both endogenous and exogenous KoRV 
strains in recent years have led to impressive advances in our 
understanding of this virus across the natural koala range 
in Australia (Table 1).

Endogenous KoRV-A

KoRV-A is the original and most prevalent subtype of KoRV 
detected across Australia (Hanger et al., 2000; Chappell 
et al., 2017; Quigley & Timms, 2020). Genetic analysis 
identified KoRV-A provirus to be present in northern 
Australian koalas in a pattern consistent with it being 
endogenously incorporated into their genomes (Tarlinton et 
al., 2006). Additional studies have supported this endogenous 
status with quantified KoRV provirus within Queensland 
and northern New South Wales koala cells at levels at or 
above one copy per cell, with the majority of provirus being 
KoRV-A (Simmons et al., 2012; Hobbs et al., 2017; Sarker 
et al., 2020; Quigley, Wedrowicz, et al., 2021).

Recent examination of KoRV proviral strains across 
Australia has revealed that every KoRV positive koala 
examined, from anywhere in Australia, contained a single 
dominant KoRV proviral sequence, identical to the originally 
published Hanger et al. (2000) KoRV sequence (accession 
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Table 1.  Summary of endogenous and exogenous koala retrovirus (KoRV) across Australia.

	 	 Endogenous KoRV-A	 Exogenous KoRV-A	 Exogenous other subtypes (B to M)

	 General	 Hanger et al., 2000 strain AF151794.2,	 KoRV-A variants, containing both	 Generally represent ≤ 2% of total
		  represents 8–96% of KoRV provirus	 intact and defective envelope genes,	 provirus detected in positive koalas,
		  detected in positive koalas	 also detected in KoRV positive koalas.	with each subtype detected at << 0.1
			   Defective variants appear uniformly	 proviral copies/cell
			   abundant across Australia.	

	 Queensland and	 All koalas tested KoRV-A positive,	 Intact non-Hanger KoRV-A strains	 Greatest diversity of subtype strains
	 northern NSW	 provirus detected at ≥ 1 copies/cell	 represent < 0.1% of KoRV-A	 detected within individual koalas

	 Southern New	 All koalas tested KoRV-A positive,	 Non-Hanger KoRV-A strains	
	 South Wales	 but provirus levels not suggestive of	 becoming more abundant	
		  endogenization (KoRV-A provirus		
		  detected at ~0.2 copies/cell)		

	 Victoria	 Not all koalas KoRV-A positive,	 Intact non-Hanger KoRV-A strains	 Least diversity of subtype strains
		  KoRV-A provirus detected at << 0.01	 represent up to 20% of KoRV-A	 detected with individual koalas
		  copies/cell, indicating lack of		
		  endogenization		

number AF151794.2) (Quigley, Wedrowicz, et al., 2021). 
This strain, which contains an attenuated CETAG Env protein 
motif (Oliveira et al., 2007), was detected as 87–96% of all the 
KoRV provirus in Queensland and northern New South Wales 
koalas (Quigley, Melzer et al., 2021; Quigley, Wedrowicz, et 
al., 2021). This strongly suggested that the Hanger KoRV-A 
strain is the endogenous strain in Queensland and northern 
New South Wales koala populations.

Exogenous KoRV-A
In contrast to northern koalas, the evidence to date suggests 
that endogenization of KoRV-A is absent or at least very rare 
in southern koalas. Both presence/absence and quantification 
studies of KoRV in southern New South Wales and Victorian 
koala populations have detected koalas that appear to be 
KoRV negative, with KoRV proviral levels much less than 
one copy per cell when present (Simmons et al., 2012; 
Wedrowicz et al., 2016; Legione et al., 2017; Quigley, 
Wedrowicz, et al., 2021).

Detailed examination of these southern koala populations 
continues to find the Hanger et al., 2000 KoRV-A strain to be 
the dominant KoRV strain present in KoRV positive koalas 
(Quigley, Wedrowicz, et al., 2021). However, the proportion 
of total provirus represented by this strain drops from an 
average of ≥ 87% in the north to only 67% of provirus per 
koala in the south (Quigley, Wedrowicz, et al., 2021). The 
KoRV proviral load within examined southern koalas notably 
contained a KoRV-A variant (A3003, accession number 
MN931401.1) with 15 single nucleotide polymorphisms 
(SNPs) when compared to the Hanger et al., 2000 KoRV-A 
strain (Quigley, Wedrowicz, et al., 2021). This resulted in 
five non-synonymous amino acid changes in the Env protein, 
returning the KoRV-A   A3003 variant to the more virulent 
CETTG motif (Oliveira et al., 2007)). While the KoRV-A 
A3003 variant was detectable in all KoRV positive koalas 
across Australia, A3003 abundance increased dramatically 
from an average of < 0.1% of provirus per koala in the 
north to ~21% of provirus per koala in the south (Quigley, 
Wedrowicz, et al., 2021). This data, coupled with proviral 
quantifications suggesting less than one in five cells per 
koala in southern New South Wales and less than one in 
a hundred koala cells per koala in Victoria contain KoRV 
provirus (Quigley, Wedrowicz, et al., 2021), is supportive 

though not definitive evidence that KoRV remains exogenous 
in these southern regions.

These detailed KoRV genetic analyses also revealed that 
defective KoRV variants are detectable in koalas across 
Australia and their abundance appears independent of 
endogenization status. A defective KoRV-A variant (A3002, 
accession number MN931400.1), which has a two base 
pair insertion when compared to the Hanger et al., 2000 
strain, creating a frameshift/stop codon in the envelope 
gene, was identified in every KoRV positive koala studied. 
Interestingly, this defective KoRV-A strain represented 
between 3–10% of all KoRV proviral reads detected in any 
koala from any part of Australia (Quigley, Wedrowicz, et 
al., 2021; Quigley, Melzer, et al., 2021).

Other potentially exogenous KoRV subtypes
Targeted proviral analysis continues to detect KoRV proviral 
variation falling under the identified subtypes KoRV-B 
to -M. Quantification of KoRV-B, KoRV-D, and KoRV-F 
proviral levels confirmed that these subtypes are present at 
much less than one copy per 10 koala cells, when detectable 
at all (Quigley, Wedrowicz, et al., 2021). Despite these 
variants composing only a small fraction (usually < 2%) 
of the total KoRV provirus present in any individual koala, 
they represent an impressive range of diversification among 
the koala populations studied (Quigley, Melzer, et al., 
2021). Comparing koala populations separated by habitat 
fragmentation for as little as 90 years, distinct population 
shifts in their KoRV proviral diversity suggested that lineage 
diversification of KoRV is still an active process (Quigley, 
Melzer, et al., 2021).

Conclusions
As more koala populations across Australia are studied 
with increasingly sensitive and specific genetic tools, our 
understanding of KoRV will continue to evolve. Presently, 
it appears that most of the KoRV provirus load in koalas 
can be traced back to a single, dominant KoRV strain (the 
originally identified Hanger et al., 2000 KoRV-A strain) that 
has endogenized into koala genomes in northern Australia 
and continues to circulate in southern Australia. However, 
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that individual strain itself may represent as many as seven 
distinct genome colonization events as determined by LTR 
variation identified (Ishida et al., 2015). Other defective 
and intact KoRV variants, encompassing all the recognized 
KoRV subtypes (A-M), vary in their distribution among 
koala populations across the country. Continued KoRV 
research will not only improve our understanding of this 
retrovirus for better koala conservation, but also expand our 
knowledge about the active process of diversification and 
endogenization of retroviruses in real time.
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